SOLUTIONS MID SEMESTER 2025-2026
(Fundamentals of Computer and C programming)

la)min_val = x<y 7 x ! vy;
1b)is_odd = x & 1;

2 a)
2 b)
2c¢)
2d)

3 a)

OR
is_odd = x % 2;
432180
X = 14 y=29
C

case 1 default

Observe that 82142 .. ~ 255 = 0 since the bit at each position is 0

in 128 of these numbers and is 1 in the remaining 128 of them. Moreover,
252725322544255 = 0, since each of these four numbers differ only in
their last two bits, which are 00, 01, 10, and 11 respectively. Hence,

14273 .. A 250

3 b)

(67172 .. A 255) A (251 A 252 ~253 72254 A255)
251 N 252 7253 7254 7255

251 » 0

251

Both if-else and switch statements are branching statements. If-else
statements evaluate Boolean conditions sequentially and decide in
which unique body the execution happens. Switch evaluates an
integer condition and matches it against a list of constant integers
labels. Depending on the placement of break statements within cases
and the presence of default case, the body of zero, one, or more than
one case-blocks may be evaluated.

In C, a string is stored as an array of characters, which is allocated
contiguous memory. To determine where the string ends within this
array, C employs a convention: every string is terminated by a special

3c)

4 a)

null character ('\0') with ASCIl code 0. This is the signal for all C
string functions to know they have reached the end of the string.

Both break and continue are jump statements. The break statement
immediately terminates the inner-most loop it is in, causing program
execution to resume at the statement following that loop. In contrast,
the continue statement only skips the remainder of the current
iteration of the inner-most loop it is in, and program control proceeds
to the next iteration of the loop, where the update condition (if
applicable) and stopping condition are re-evaluated.

In entry controlled loops (while and for loops in C), the stopping
condition is evaluated before executing its body, meaning the body
never runs if the condition is initially false. In exit-controlled loops
(do-while loop in C) the stopping condition is evaluated after
executing its body, which guarantees the loop's body will run at least
once.

#include <stdio.h>
int main()

{

long int N;

printf("Enter a positive long int N: ");
scanf("%1ld", &N);

if(N < 1) {

printf("Please enter positive N. \n");

} else if(N == 1) {

printf("1 has no prime factors.\n");

} else {

printf("Prime factorization of %l1d = ", N);
//the loop counter is a candidate factor of N. It

should be long int since it may become as large as N

for(long int f=2; f<=N; f++) {
if (N%f == 08) {

}

4 b)

int k = 0; //k will store the power of f in N
while(N%f == 0) {

N /= f;
k += 1;
}
printf("%ld*%d ", f, k);
}
}
}
return 0;

#include <stdio.h>
int main()

{

int N;
//fibo should be a long int array because fibo[60] ~

pow(Phi, 60) which is larger than pow(2, 31) but smaller than
pow(2, 63). Here Phi is the golden ratio ~ 1.6.

long int fibo[68] = {@, 1};

printf("Enter N: ");

scanf("%d", &N);

if(N <1 || N> 60) {
printf("Please enter N between 1 and 60.\n");
return 1;

for(int i=2; i<N; i++) fibo[i] = fibo[i-1] + fibo[i-2];
printf("%d terms of Fibonacci series are: ", N);
for(int i=@; i<N; i++) printf("%1ld ", fibo[i]);
printf("\n");

return 0;

4 c)
#include <stdio.h>
#define MAXN 20
int main()
{
long double arr[MAXN];
printf("Enter %d long double values: ", MAXN);
//%Lf is the long double type identifier
for(int i=0; i<MAXN; i++) scanf("%Lf", &arr[i]);
printf("The elements located at even indices in the array in
the reverse order are: ");
//the array index starts at @ and goes until MAXN-1
for(int i=MAXN-1; i>=0; i--) {
if((i%2) == @) printf("%Lf ", arr[i]);
}
printf("\n");
return 0;

