# CS304: Automata and Formal Languages

Lec 1

Course Intro, Administrivia, and Refresher on Basic Maths

Rachit Nimavat

July 29, 2025

## Outline

- Introduction
- Administrivia
- Refresher on Basic Maths

## What is a Computer?

■ Anything that computes....

But what is it really?

On the surface... Laptops, smartphones, servers, AI, ...

Complex machines doing amazing things

**Under the hood...** They execute instructions, process data, make decisions.

But how? What makes them "compute"?

**Programming!** CS101 says its all **code**.

So, computer is just a machine that runs code...

Deep down... Computers are described by incredibly elegant, abstract mathematical

models: Automata Theory

(Tip: Appending 'theory' to almost any term makes it sound deep and legit.)

# Why Study Automata Theory? (Why this course matters!)

## Theory

### **Understanding Computation**

What problems computers can solve?

What problems <u>cannot</u> be solved (even by future supercomputers)?

## **Understanding Computers**

Core ideas behind programming languages, compilers, interpreters, ...

How is 'if  $(x > 3) \{ ... \}$ ' understood?

How is 'SELECT \* FROM users;' processed?

#### **Practice**

#### ML & AI

Finite Automata  $\equiv$  state machines

Formal Languages ≡ symbolic Al and knowledge representation

## Formal Verification & Security

Proving software/hardware correctness

Analyzing protocols for vulnerabilities

## **Develop Algorithmic Thinking**

Learn to think rigorously about problems and solutions

Essential for any serious computer scientist!

## Goals of this Course

- 1 Learn about mathematical abstractions for computation
- 2 Understand relation between machine models and classes of formal languages
- 3 Fundamental limits of what is computable and the distinction between tractable and intractable problems
- 4 Ability to write formal proofs regarding properties of languages and computation

This is largely a theoretical course with substantial mathematical lining

### A Caveat

Terminology/concepts in this course may feel a bit archaic/dated They were invented before modern computers
This is the "mother tongue" of pioneers like



Alan Turing



Kurt Gödel



John von Neumann

# Administrivia (tentative)

Lectures: Tue 3-4pm, Thu 2-3pm, and Fri 10-11am. Office hours: Thu 3-5pm

**Homework:** Expect  $\approx 4$  homeworks. **No Extensions.** Submit on time! But we'll drop the lowest scored homework. (Best-(n-1) of n.) It is compulsory to type the homework assignments, handwritten-on-paper ones will not be accepted. You are highly encouraged to learn LaTeX (head to <u>overleaf.com</u> for a quick intro.)  $0^{th}$  **problem set:** no grade (warm-up and self-diagnostic).

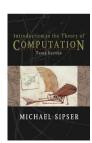
Quizzes: 4 in-class  $\approx 10$ min quizzes. (Best-(n-1) of n.)

#### Midsems and Endsems

Have a look at the Course Policy & Grading on the course website https://nimavat.pages.dev/courses/2025-monsoon-cs304/ You'll receive mail!

## Administrivia - II (tentative)

Course website: Lecture slides and homeworks will be posted there


Google classroom: Login to your Google Classroom to submit homeworks

#### Textbook:

Introduction to Automata Theory, Languages, and Computation by John E. Hopcroft, Rajeev Motwani, and Jeffrey D Ullman.



You are not required to purchase the textbook. 5 copies available for in-library use.



#### Reference Book:

Slightly more advanced book: Introduction to the Theory of Computation by Michael Sipser. 5 copies should be available soon.

## Sets

**Defn:** A **set** is an unordered collection of distinct objects (elements).

#### **Notation:**

$$x \in A$$
 ( $x$  is an element of set  $A$ )  
 $y \notin A$  ( $y$  is **not** in  $A$ )  
Examples:  
 $A = \{1, 2, 3\}$   
 $B = \{\text{sun}, \{ \}, \text{sky} \}$   
 $C = \{x \mid x \text{ is an even integer} \}$ 

|B| is the number of elements in B For  $B = \{\text{sun}, \{\text{sky}\}, |B| = 3\}$ 

### **Special Sets:**

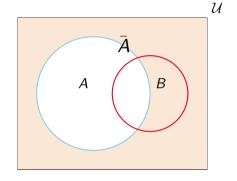
**Emptyset:**  $\emptyset$  or  $\{\}$  (a set without any element)

Is  $S = \{\{\}\}$  an emptyset?

Is  $S = \{\emptyset\}$  an emptyset?

**Universal Set:** U or  $\mathcal{U}$  (set of all elements under consideration)

## Sets - II


## **Operations**

$$A \cap B$$

$$A \cup B$$

$$A \setminus B$$

$$\begin{array}{l}
A \setminus B \\
A^c = \bar{A} = \mathcal{U} \setminus A
\end{array}$$



In Automata Theory, all our sets will be sets of "strings". We call them languages.

## Boolean Logic

### **Propositions**

Statements that are either **True** or **False**.

```
"Set \{\emptyset\} is not empty" (True)
```

"Earth is flat" (False)

"Everything happens for a reason" (NOT a proposition!)

For a statement to be a proposition, it must be falsifiable

#### **Logical Connectives**

Combine propositions to form more complex statements

**AND:**  $p \wedge q$  (Both p and q)

**OR:**  $p \lor q$  (Either p or q or both)

**NOT:**  $\neg p$  (Also  $\bar{p}$ . Opposite of p's truth value)

**Impl.**:  $p \implies q$  (pronounced p implies q) means: If p then q

## Boolean Logic - II

#### **Truth Tables**

Defines truth values of a 'statement' for all possible truth values of its components

| Р | Q | $\neg P \land Q$ |
|---|---|------------------|
| Т | Т | F                |
| Т | F | F                |
| F | Т | Т                |
| F | F | F                |

#### What's in for us?

- Automata (and computers too) make decisions based on logical conditions
- Formal languages are defined using logical rules and set operations

## Ensure you're very comfortable with basic maths. Solve HW-0.

See you in the next lecture!