CS304: Automata and Formal Languages

Lec 2

Refresher on Basic Maths (contd.), Alphabet, Strings, Language, Induction

Rachit Nimavat

July 31, 2025

Outline

- Refresher on Basic Maths
- 2 Language
- Proofs
- Mathematical Induction

Sets

Defn: Unordered collections of distinct elements

Operations: Union (\cup), Intersection (\cap), Difference (\setminus), Complement (A^c or \bar{A})

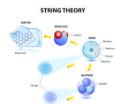
Misc Terms: Emptyset $(\emptyset \text{ or } \{\})$ Universe $(U \text{ or } \mathcal{U})$, Superset $A \supset B$ or $A \supseteq B$,

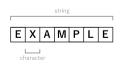
Subset $A \subset B$ or $A \subseteq B$

In Automata Theory, our "elements" are **strings**, which, in turn, are sequence of characters of an **alphabet**.

Collections of strings form languages – which are fundamentally sets

But what are Alphabet and Strings formally?





Alphabet and Strings

Alphabet Σ

A finite, non-empty set of symbols

- e.g. $\Sigma = \{0,1\}$ (binary alphabet)
- e.g. $\Sigma = \{a, b, \dots, z\}$ (lowercase English alphabet)

String w

A finite sequence of symbols from Σ

- e.g. For $\Sigma = \{a,b,\dots,z\}$, $w_1 = {\sf xyz}, \ w_2 = {\sf aaba}$ are strings

Length of a string (|w|): e.g., |aaba| = 4

Empty String ε with 0 symbols i.e. $|\varepsilon| = 0$

Concatenation uv: Joining strings. e.g., $w_1w_2=$ xyzaaba and $w_2w_1=$ aabaxyz

Boolean Logic

```
Proposition: True/False statements For \Sigma = \{0,1\}, w_1 = 00010, and w_2 = 0111, w_1 is longer than w_2 (True) when viewed as a number, w_1 is bigger than w_2 (False) Connectives like AND (\wedge), OR (\vee), NOT (\neg) combine propositions when viewed as numbers (w_1 is prime) \wedge (w_2 is prime) (True) Truth Table defines precise behavior of statement for all possible truth values of its components
```

Misc Terms

∃ "there exists"

A property holds for at least one element in a domain

e.g. $\exists x \in \mathbb{N}, x$ is prime (there exists at least one prime number)

∀ "for all"

A property holds for every element in a domain

e.g. $\forall x \in \mathbb{N}, x \geq 0$ (for all natural numbers x, x is greater than or equal to 0)

Functions

Defn: For sets A and B, a function $f:A\to B$ assigns to each element in a A (domain) exactly one element in a B (the codomain)

 $\{f(x) \mid x \in A\}$ is called range of f

- $\forall x \in A, f(x) \in B$ (True)
- $\{f(x) \mid x \in A\} = B$ (False)
- $\{f(x) \mid x \in A\} \subseteq B \text{ (True)}$
- $\forall y \in B, \exists x \text{ with } f(x) = y \text{ (False)}$
- $\forall x \in A, \exists f(x) \in B \text{ (True)}$
- **e.g.** $f: \mathbb{N} \to \mathbb{R}$, $f(x) = \sqrt{x}$
 - Domain: Natural numbers (\mathbb{N})
 - Codomain: Real numbers (\mathbb{R})
 - Range: $\left\{0,1,\sqrt{2},\sqrt{3},\ldots,\right\}\subset\mathbb{R}$

Homework: Look up Relations on Wikipedia

Language

Alphabet Σ is a finite set

String w over Σ is a finite sequence of elements of Σ

 Σ^* is the set of all strings over Σ

e.g.
$$\Sigma = \{0,1\} \implies \Sigma^* = \{\varepsilon,0,1,00,01,10,11,\dots,\}$$

Language over Σ is a set of strings over Σ

Any language over Σ is a **subset** of Σ^*

e.g. $\Sigma = \{0,1\}$, then $A = \{w \mid w \text{ is a prime when viewed as a number}\}$ is a language

e.g. $\Sigma = \{a, b, \dots, z\}$, then $B = \{w \mid w \text{ is an English word}\}$ is a language

Languages = Problems

Language over Σ is a set of strings over Σ

Language is a **subset** of Σ^*

Problem: Given a string $w \in \Sigma^*$ and a language $L \subseteq \Sigma^*$, is $w \in L$?

 $Languages \equiv Functions$ that take a string as input, and output a single bit denoting whether the string is in language or not

Theorem 2.1

Every language L over Σ uniquely corresponds to a function $f: \Sigma^* \mapsto \{0,1\}$.

Proof Idea.

Given
$$L,$$
 define f s.t
$$f(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{otherwise} \end{cases}$$

Given
$$f$$
 , define
$$L:=\{x\in \Sigma^*\ | f(x)=1\}$$

Mathematical Proof¹

A good proof should be:

- easy to understand
- correct!
- has 3 levels of detail
 - 1 the "hint"
 - e.g. Proof by contradiction, Proof by induction...
 - 2 short para with main ideas
 - 3 the full proof (and nothing but the proof!)

The slides will only have hint/main ideas, but in your homeworks/quizzes/exams, you are required to provide all the details

¹Ryan Williams' slides!

Induction: The Power of Stepping Stones

Like proving you can climb an infinitely tall ladder

Often need to prove properties about structures that are defined **recursively**Induction allows us to prove an infinite number of cases with a finite number of steps

Core Idea:

Imagine an infinitely tall ladder

Base Case: If you can climb the first step (prove the statement for the smallest value)

Inductive Step: And if you show that <u>if</u> a step can be climbed, the <u>next</u> one can also be climbed (prove that if the statement holds for k, it holds for k+1)

Conclusion: Then an infinitely tall ladder can be <u>climbed</u> (the statement holds for all values)

Induction - Example

Flipped Reversals

```
\Sigma = \{0, 1\} and a string w over \Sigma,
```

- flipped(w) or \overline{w} is obtained by flipping all bits of w
- $\mbox{reverse}(w)$ or w^R is obtained by "reading" w from right-to-left

Observation 1

For any binary string w, $\overline{(w^R)} = (\overline{w})^R$.

Proving: For any binary string w, $\overline{(w^R)} = (\overline{w})^R$ Base Case

Proof by Induction on |w|.

Base case: $w = \varepsilon$ (the empty string)

On Board!

- Let
$$w=\varepsilon$$

- LHS:
$$\overline{(\varepsilon^R)}=\overline{\varepsilon}=\varepsilon$$

- RHS:
$$(\overline{\varepsilon})^R = \varepsilon^R = \varepsilon$$

- Since LHS = RHS, the property holds for
$$|w|=0$$

(since
$$\varepsilon^R = \varepsilon = \overline{\varepsilon}$$
)

Proving: For any binary string
$$w$$
, $\overline{(w^R)} = (\overline{w})^R$

Proof by Induction on |w|.

Base case: $w = \varepsilon$

Inductive Hypothesis Assume that the property holds for some arbitrary string x with length $k \geq 0$. i.e. assume $\overline{(x^R)} = (\overline{x})^R$

Inductive Step Let w be an arbitrary string of length k+1

On Board!

- Conclusion:
 - Since the base case holds, and the inductive step has shown that if the property holds for strings of length k, it also holds for strings of length k+1,
 - By Induction, $\overline{(w^R)} = (\overline{w})^R$ for all binary strings w.

