## CS304: Automata and Formal Languages

Lec 3

Refresher on Basic Maths, Recursion, and Operations on Strings and Languages

Rachit Nimavat

Aug 1, 2025

## Outline

- Recap
- Recursion
- 3 Operations on Strings and Languages

### Announcement

10min in-class **quiz** in next class! Syllabus: everything until (and including) induction

# Alphabet, Strings, and Languages

**Alphabet**  $\Sigma$ : A finite, non-empty set of symbols

- e.g. the binary alphabet  $\Sigma = \{0, 1\}$ 

**String** w: A finite sequence of symbols taken from an alphabet

- e.g. w=001 is a string over  $\Sigma$
- $\varepsilon$  is an empty string with  $|\varepsilon|=0$  symbols
- $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, \dots, \}$  is the set of all possible strings over  $\Sigma$

**Language** *L*: A set of strings over a particular alphabet

- For any language L over  $\Sigma$ ,  $L \subseteq \Sigma^*$
- Languages  $\equiv$  Functions

Each language L can be thought of as an <u>indicator</u> function Each boolean function f can be thought of as a language

### Induction

Useful to prove properties about structures that are defined recursively



#### Core Idea:

Imagine an infinitely tall ladder

**Base Case:** If you can climb the first step (prove the statement for the smallest value)

**Inductive Step:** And if you show that <u>if</u> a step can be climbed, the <u>next</u> one can also be climbed (prove that if the statement holds for k, it holds for k+1)

**Conclusion:** Then an infinitely tall ladder can be <u>climbed</u> (the statement holds for all values)

Otherway round: Use recursion to build "infinite ladders"

### Recursion

Core Idea: Imagine an infinitely tall ladder

#### Induction

Base Case: If you can climb the first step (prove the statement for the smallest value)

Inductive Step: And if you show that  $\underline{\text{if}}$  a step can be climbed, the  $\underline{\text{next}}$  one can also be climbed (prove that: if the statement holds for k, it also holds for k+1)

**Conclusion:** Then the ladder can be <u>climbed</u> (the statement holds for all values)



### Recursion

Base Case: If first step exists (state the simplest/smallest members of the set)

Recursive Step: And if you show how to build the next step when standing on the previous step (provide rules to build 'next level' of elements from existing ones)

Closure: Then the ladder can be built (completes the description of the set)

## Example - Recursive Definition of $\Sigma^*$

Formalize the definition of the set of all strings over an alphabet.

Fix an alphabet  $\Sigma$ . Then,  $\Sigma^*$  is the unique set satisfying the following properties:

**Base Case:** The empty string  $\varepsilon \in \Sigma^*$ 

**Recursive Step:** For each string  $w \in \Sigma^*$  and a symbol  $a \in \Sigma$ ,  $wa \in \Sigma^*$  (recall, wa is concatenation of strings w and a)

**Closure:** A string is in  $\Sigma^*$  only if it can be derived from the base case by a finite number of applications of the recursive step

HW: Show that  $\Sigma^*$  (as defined above) is indeed the set of all strings over  $\Sigma$ . Hint:

(Show (i)  $\Sigma^*\subseteq \mathsf{AllStrings}(\Sigma)$  and (ii)  $\mathsf{AllStrings}(\Sigma)\subseteq\Sigma^*$ ). (i) is easy, (ii) uses induction.)

## Another Example

$$\Sigma = \{0,1\} \text{ and } L = \{0,01,011,0111,01111,\dots,\}$$

Base Case:  $0 \in L$ 

Recursive Step:  $w \in L \implies w1 \in L$ 

Closure: L is the set of all strings that can be derived from the base case by a finite number of applications of the recursive step

HW: Write recursive definition of  $L=\{\varepsilon,01,0011,000111,00001111,\dots,\}$  over  $\Sigma=\{0,1\}$ 

# Operations on Strings: Concatenation and Reversal

**Concat:** If x and y are strings, xy is their concatenation e.g. x = 010 and y = 101

- -xy = 010101
- -xx = 010010
- shorthand for **string powers**:  $x^2 = xx = 010010$
- for a string w, define  $w^n := \underbrace{ww \dots w}_{n \text{ times}}$

**HW:** Formally define  $w^n$ .

**Hint:** 
$$m_{\gamma}m=: {}_{\mathbb{T}^{+\gamma}}m$$
 pue  $\beta=: {}_{0}m$ 

**Reversal:** For a string w, its reverse  $w^R$  is defined as:

- If  $w = \varepsilon$ ,  $\varepsilon^R := \varepsilon$
- If w = xa, for string x and character a,  $w^R := ax^R$

HW: Write a recursive C/Python program to find string reversals. Test your program with  $w = \mathsf{STRESSED}$ .

## Operations on Languages: Union, Intersection, and Complement

Recall, languages are <u>sets</u>. All set operations apply naturally.

#### Union

For languages  $L_1$  and  $L_2$ , define  $L_1 \cup L_2 := \{w \, | \, w \in L_1 \vee w \in L_2\}$ 

#### Intersection

For languages  $L_1$  and  $L_2$ , define  $L_1 \cap L_2 := \{w \mid w \in L_1 \land w \in L_2\}$ 

### Complement

For a language over  $\Sigma$ , define  $\bar{L}=L^c:=\{w\in\Sigma^*\mid w\notin L\}=\underbrace{\Sigma^*\setminus L}_{\text{"set minus}}$ 

# Operations on Languages: Concatenation

```
Similar to set "cross-product" or "cartesian-product"
For languages L_1 and L_2, define L_1L_2 := \{xy \mid x \in L_1 \land y \in L_2\}
     e.g. L_1 = \{0, 1\} and L_2 = \{a, b\} then L_1L_2 = \{0a, 0b, 1a, 1b\}
     note: L_1 and L_2 may not be over same alphabet
     What is the alphabet of L_1L_2?
     If L_1 over \Sigma_1 and L_2 over \Sigma_2, then language L_1L_2 is over \Sigma_1 \cup \Sigma_2
Language Powers: Similar to string powers.
     L^2 = LL. L^3 = LLL, and so on
     What is L^0? L^0 = \{\varepsilon\}
HW: Formally define L^n
Hint: T_{\mathcal{A}} = T_{\mathcal{A}} + T_{\mathcal{A}} = T_{\mathcal{A}}
```

# Operations on Languages: Kleene Star

Consider a language L over alphabet  $\Sigma$ . We defined  $L^n = \underbrace{LL \dots L}_{n \text{ times}}$ 

Useful Shorthand to denote 0 or more occurrences (known as <u>Kleene Star</u> pronounced: clay-knee):

$$L^* = L^0 \cup L^1 \cup L^2 \dots = \bigcup_{i=0}^{\infty} L^i$$



 $L^{st}$  is the set of all strings formed by concatenating zero or more strings from L

### Notice:

- $\varepsilon \in L^*$
- $L^*$  is also a language over  $\Sigma$
- Can also view  $\Sigma$  as a language (consisting of all possible single-character strings)
- $\Sigma^*$  is the language consisting of all possible strings over  $\Sigma$  (excatly as we defined!)

HW: Convince yourself that  $L \subseteq L^* \subseteq \Sigma^*$ . When are these inequalities tight?

### Reminder

10min in-class **quiz** in next class!

Syllabus: everything until (and including) induction