CS304: Automata and Formal Languages
Lec 3

Refresher on Basic Maths, Recursion, and Operations on Strings and Languages

Rachit Nimavat

Aug 1, 2025

1/13

Outline

@ Recap

© Recursion

© Operations on Strings and Languages

2/13

Recap

Announcement

10min in-class quiz in next class!
Syllabus: everything until (and including) induction

3/13

Recap

Alphabet, Strings, and Languages

Alphabet X: A finite, non-empty set of symbols
- e.g. the binary alphabet ¥ = {0,1}

String w: A finite sequence of symbols taken from an alphabet
-e.g. w =001 is a string over X
- £ is an empty string with |¢| = 0 symbols
- ¥*=1{0,1,00,01,10,11, ..., } is the set of all possible strings over ¥
Language L: A set of strings over a particular alphabet
- For any language L over 3, L C »*
- Languages = Functions
Each language L can be thought of as an indicator function
Each boolean function f can be thought of as a language

4/13

Recap

Induction

Useful to prove properties about structures that are defined recursively

Core ldea:

A mathematician

Imagine an infinitely tall ladder

Base Case: If you can climb the first step (prove the
statement for the smallest value)

Inductive Step: And if you show that if a step can be
climbed, the next one can also be climbed (prove that if
the statement holds for k, it holds for k + 1)

Conclusion: Then an infinitely tall ladder can be climbed
an infinitely tall ladder (the statement holds for all values)

ITTTTTTTIT

Otherway round: Use recursion to build “infinite ladders”

5/13

Recursion

Recursion

Core Ildea: Imagine an infinitely tall ladder

Induction Recursion

Base Case: If you can climb the
first step (prove the statement for
the smallest value)

Inductive Step: And if you show
that if a step can be climbed, the
next one can also be climbed
(prove that: if the statement
holds for k, it also holds for k + 1)

Conclusion: Then the ladder can
be climbed (the statement holds
for all values)

A mathematician

an infinitely tall ladder

Base Case: If first step exists
(state the simplest/smallest
members of the set)

Recursive Step: And if you show
how to build the next step when
standing on the previous step
(provide rules to build ‘next level’
of elements from existing ones)

Closure: Then the ladder can be
built (completes the description
of the set)

6/13

Recursion

Example - Recursive Definition of X*
Formalize the definition of the set of all strings over an alphabet.

Fix an alphabet . Then, ¥* is the unique set satisfying the following properties:
Base Case: The empty string ¢ € ¥*

Recursive Step: For each string w € ¥* and a symbol a € X, wa € ¥* (recall, wa
is concatenation of strings w and a)

Closure: A string is in X* only if it can be derived from the base case by a finite
number of applications of the recursive step

Hint:
(‘uononput sasn (1) “Ases si (1) “(,X O (K)sBungy (1) pue (Z)sBuag|y S X (1) moys)

7/13

Recursion

Another Example

¥ ={0,1} and L = {0,01,011,0111,01111, ..., }
Base Case: 0 € L
Recursive Step: we L. = wl € L

Closure: L is the set of all strings that can be derived from the base case by a finite
number of applications of the recursive step

8/13

Operations on Strings and Languages

Operations on Strings: Concatenation and Reversal

Concat: If x and y are strings, xy is their concatenation
e.g. £ =010 and y = 101

- zy = 010101

- zz = 010010

- shorthand for string powers: 22 = xz = 010010

- for a string w, define w" := ww... w

n times

Hint: MM =:

y ,_./{71 pue 3 =: .M

I 0

Reversal: For a string w, its reverse w’ is defined as:

-fw=e¢, et :=¢
- If w = xa, for string = and character a, W := ax®

9/13

Operations on Strings and Languages

Operations on Languages: Union, Intersection, and Complement

Recall, languages are sets. All set operations apply naturally.

Union
For languages L, and L,, define L; U L, := {w|w € Ly Vw € Ly}

Intersection

For languages L, and L,, define L; N Ly :={w|w € Ly Aw € Ly}
Complement

For a language over ¥, define L = L¢:={w e X* |[w¢ L} = ¥*\ L

set minus

10/13

Operations on Strings and Languages

Operations on Languages: Concatenation

Similar to set “cross-product” or "cartesian-product”

For languages L, and L,, define L, L, := {zy |z € L1 ANy € Ly}
eg. L, ={0,1} and L, = {a,b} then L, L, = {0a,0b, 1a, 1b}
note: L; and L, may not be over same alphabet
What is the alphabet of L, L7

If L, over X, and L, over X, then language L, L, is over ¥; U X,
Language Powers: Similar to string powers,

IL2=LL, L3 = LLL, and so on

What is L97? L0 = {e}

Hint: O
M Ty = T B =01

11/13

Operations on Strings and Languages

Operations on Languages: Kleene Star

Consider a language L over alphabet . We defined L = LL ... L

n times

Useful Shorthand to denote 0 or more
occurrences (known as Kleene Star
pronounced: clay-knee):

o0
L*:LOUL1UL2...=UU
=0

L* is the set of
all strings formed
by concatenating
zero or more
strings from L

Notice:
-eeL”
- L* is also a language over ¥
- Can also view X as a language (consisting of all possible single-character strings)
- X* is the language consisting of all possible strings over X (excatly as we defined!)
HW: Convince yourself that L. C L* C >*. When are these inequalities tight?

12/13

Operations on Strings and Languages

Reminder

10min in-class quiz in next class!
Syllabus: everything until (and including) induction

13/13

	Recap
	Recursion
	Operations on Strings and Languages

