
CS304: Automata and Formal Languages
Lec 4

Introduction to Finite Automata

Rachit Nimavat

Aug 5, 2025

1 / 13

Outline

1 Recap

2 Automata

3 Deterministic Finite Automata (DFA)

2 / 13

Recap

Alphabet, Strings, and Languages
Alphabet Σ: A finite, non-empty set of symbols

- e.g. the binary alphabet Σ = {0, 1}

String 𝑤: A finite sequence of symbols taken from an alphabet
- e.g. 𝑤 = 001 is a string over Σ
- 𝜀 is an empty string with |𝜀| = 0 symbols
- Σ∗ = {𝜀, 0, 1, 00, 01, 10, 11, … , } is the set of all possible strings over Σ

Language 𝐿: A set of strings over a particular alphabet
- Any language 𝐿 ⊆ Σ∗

- Languages ≡ Functions
Each language 𝐿 can be thought of as an indicator function
Each boolean function 𝑓 can be thought of as a language

3 / 13

Recap

Operations on Languages

Recall, languages are sets. All set operations apply naturally.

Union: OR operation 𝐿1 ∪ 𝐿2 ∶= {𝑤 | 𝑤 ∈ 𝐿1 ∨ 𝑤 ∈ 𝐿2}
Intersection: AND operation 𝐿1 ∩ 𝐿2 ∶= {𝑤 | 𝑤 ∈ 𝐿1 ∧ 𝑤 ∈ 𝐿2}
Concatenation: followed-by/cross-product 𝐿1𝐿2 ∶= {𝑥𝑦 | 𝑥 ∈ 𝐿1 ∧ 𝑦 ∈ 𝐿2}
e.g. 𝐿1 = {𝑎, 𝑏} 𝐿2 = {𝑝, 𝑞}. 𝐿1𝐿2 = {𝑎𝑝, 𝑎𝑞, 𝑏𝑝, 𝑏𝑞}
Kleene Star: 0-or-more-times 𝐿∗ = ⋃∞

𝑖=0 𝐿𝑖

e.g. 𝐿 = {𝑎, 𝑏}. 𝐿∗ = {𝜀, 𝑎, 𝑏, 𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏, 𝑎𝑎𝑎, 𝑎𝑎𝑏, 𝑎𝑏𝑎, 𝑎𝑏𝑏, 𝑏𝑎𝑎, 𝑏𝑎𝑏, 𝑏𝑏𝑎, 𝑏𝑏𝑏, …}
What is the alphabet of 𝐿∗? Σ: same as the alphabet of 𝐿

These operations allow us to build complex languages from simpler building blocks

4 / 13

Recap

Language = Problem
Recall Languages ≡ Functions:
Theorem 1.1
Every language 𝐿 over Σ uniquely corresponds to a function 𝑓 ∶ Σ∗ ↦ {0, 1}.

How can a computer recognize if a string belongs to a language?
e.g. primality testing: Is a number 𝑛 prime or not?
Let 𝐿primes be language over Σ = {0, 1} of binary representations of prime numbers
Primality testing equivalent to checking binary(𝑛) ∈ 𝐿primes?

e.g. image classification: Is a given image a picture of dog?
An image can be represented as a finite string of pixel data.
Let Σ be the set of all possible pixel color values and let 𝐿dog be language of all
strings over Σ that form a recognizable image of a dog.
Image classification equivalent to checking if a given image string 𝑤𝑖𝑚𝑔 ∈ 𝐿𝑑𝑜𝑔.

5 / 13

Recap

The Central Question
Fix an alphabet (usually Σ = {0, 1}) and a language 𝐿 ⊆ Σ∗

Key question in theoretical computer science: given a string 𝑤 ∈ Σ∗, does 𝑤 ∈ 𝐿 or not?
A Question Ahead of Its Time
This was the driving question for pioneers like Alan Turing, and Alonzo Church in the
1930s — years before the first computers were built

6 / 13

Recap

The Central Question
Fix an alphabet (usually Σ = {0, 1}) and a language 𝐿 ⊆ Σ∗

Key question in theoretical computer science: given a string 𝑤 ∈ Σ∗, does 𝑤 ∈ 𝐿 or not?
A Question Ahead of Its Time
This was the driving question for pioneers like Alan Turing, and Alonzo Church in the
1930s — years before the first computers were built

To answer this, they
invented formal, “idealistic” models of computation
developed the theory and terminology for machines like the Turing Machine and the
very Automata we will study, all before the hardware existed

A Modern Parallel: Quantum Computing
This is happening again today. We design algorithms for Quantum Computers even
while large-scale, fault-tolerant quantum hardware remains an idealized machine of the
future

7 / 13

Automata

Benefit of Hindsight

Question 1
Fix an alphabet Σ and a language 𝐿 ⊆ Σ∗. Given a string 𝑤 ∈ Σ∗, does 𝑤 ∈ 𝐿 or not?

e.g. Σ = {0, 1} 𝐿 = {𝑤 | 𝑤 is a sequence of 0s followed by a single 1} = {0}∗ ⋅ {1}.
Shorthand notation: 𝐿 = 0∗1
𝐿 = {1, 01, 001, 0001, …}
Question 2
How does a C program to “recognize” strings in L look like?

8 / 13

Automata

Benefit of Hindsight - C Code

// Returns true if w is in the language 0*1
bool recognize(const char* w) {

int state = 0; // 0: start, 1: accept, 2: fail
int len = strlen(w);
for (int i = 0; i < len; i++) {

char input = w[i];
if (state == 0) { // In start state

if (input == '0') state = 0;
else if (input == '1') state = 1;
else state = 2; // Invalid char

} else if (state == 1) { // accept state
state = 2; // fail if unexpected char

}
// If state is 2 (fail), it stays 2

}
return (state == 1);

}

- The loop processes
the string one
character at a time
- The state variable
is the machine’s only
memory
- The if/else logic
represents the
program’s rules or
transitions.

9 / 13

Automata

Benefit of Hindsight - Stripping the Syntax

Input - const char* w

Read-Only Input: The const char* w represents a read-only input tape. We can
inspect the input string but not change it

One-Way Movement: The for loop, which processes the string from left to right,
models a one-way read head. We read one symbol at a time and never go back.

10 / 13

Automata

Benefit of Hindsight - Stripping the Syntax

State variable could only be in one of three states:
- State 0 (𝑞0): ”We have only seen zeros so far.” → start state
- State 1 (𝑞1): ”We have seen zero or more zeros, followed by exactly one 1.” →
accepting state
- State 2 (𝑞𝑓𝑎𝑖𝑙): ”We have seen an invalid sequence (e.g., a ’0’ after a ’1’, or a
second ’1’).” → reject state.

Our program is just an implementation of an abstract machine that
has a unidirectional read-only access to input
has a finite number of states
moves between these states based on predefined rules.

This abstract machine is a Finite Automaton!
11 / 13

Deterministic Finite Automata (DFA)

Deterministic Finite Automata (DFA)
Formal Definition

DFA is a 5-tuple 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

‘symbol’

𝑄
Σ
𝛿
𝑞0 ∈ 𝑄
𝐹 ⊆ 𝑄

description

finite set of states
underlying finite alphabet
transition function between states
start state
accepting states

in our code

state ∈ {0, 1, 2}
Σ = {‘0’, ‘1’}
the ‘core logic’ in C code
state = 0
state = 1

12 / 13

Deterministic Finite Automata (DFA)

Deterministic Finite Automata (DFA)
Visualizing DFA

State Diagram is the intuitive way we visualize and work with DFAs
Conventions:

States 𝑄 are circles
Start state (𝑞0) has an
incoming arrow labeled start
Accepting states (𝐹) are
double circles
Transitions (𝛿) are arrows
between states, labeled with
input symbols from Σ

Our DFA for 𝐿 = 0∗1:

𝑞0start 𝑞1 𝑞𝑓𝑎𝑖𝑙

0

1 0,1

0,1

13 / 13

	Recap
	Automata
	Deterministic Finite Automata (DFA)

