Rachit Nimavat

Aug 5, 2025

1/13

Outline

@ Recap

© Automata

© Deterministic Finite Automata (DFA)

2/13

Recap

Alphabet, Strings, and Languages

Alphabet X: A finite, non-empty set of symbols
- e.g. the binary alphabet ¥ = {0,1}

String w: A finite sequence of symbols taken from an alphabet
- e.g. w =001 is a string over X
- £ is an empty string with |¢| = 0 symbols
-3 ={e,0,1,00,01,10,11, ..., } is the set of all possible strings over %

Language L: A set of strings over a particular alphabet
- Any language L C »*
- Languages = Functions

Each language L can be thought of as an indicator function
Each boolean function f can be thought of as a language

3/13

Recap

Operations on Languages

Recall, languages are sets. All set operations apply naturally.

Union: OR operation L, U L, :={w|we L, Vwe Ly}
Intersection: AND operation L, N L, :={w|w e Ly Nw e Ly}

Concatenation: followed-by/cross-product L, L., := {xy |z € Ly Ny e Ly}

eg. Ly ={a,b} Ly ={p,q}. LiL, = {ap,aq,bp,bq}

Kleene Star: 0-or-more-times L* = Uz“ L

eg. L ={a,b}. L* = {¢g,a,b,aa,ab,ba,bb, aaa,aab, aba, abb, baa,bab, bba, bbb, ...}
What is the alphabet of L*? >3 same as the alphabet of L

These operations allow us to build complex languages from simpler building blocks

4/13

Language = Problem

Recall Languages = Functions:
Theorem 1.1
Every language L over ¥ uniquely corresponds to a function f : ¥* + {0,1}. J

How can a computer recognize if a string belongs to a language?
e.g. primality testing: Is a number n prime or not?
Let L,imes be language over ¥ = {0, 1} of binary representations of prime numbers
Primality testing equivalent to checking binary(n) € L ;nes?
e.g. image classification: Is a given image a picture of dog?
An image can be represented as a finite string of pixel data.
Let X be the set of all possible pixel color values and let Ly, be language of all
strings over X that form a recognizable image of a dog.

Image classification equivalent to checking if a given image string w;,,,, € Ly, 13

Recap

The Central Question

Fix an alphabet (usually ¥ = {0,1}) and a language L C X*
Key question in theoretical computer science: given a string w € ¥*, does w € L or not?

A Question Ahead of Its Time
This was the driving question for pioneers like Alan Turing, and Alonzo Church in the

1930s — years before the first computers were built

Leimlogle)
2

<
&

>

6/13

Recap

The Central Question

Fix an alphabet (usually ¥ = {0,1}) and a language L C X*
Key question in theoretical computer science: given a string w € ¥*, does w € L or not?
A Question Ahead of Its Time

This was the driving question for pioneers like Alan Turing, and Alonzo Church in the
1930s — years before the first computers were built

To answer this, they
invented formal, “idealistic” models of computation
developed the theory and terminology for machines like the Turing Machine and the
very Automata we will study, all before the hardware existed

A Modern Parallel: Quantum Computing

This is happening again today. We design algorithms for Quantum Computers even
while large-scale, fault-tolerant quantum hardware remains an idealized machine of the
future

7/13

Automata

Benefit of Hindsight

Question 1
Fix an alphabet ¥ and a language L C ¥*. Given a string w € ¥*, does w € L or not? J

eg. ¥ ={0,1} L ={w]|w is a sequence of Os followed by a single 1} = {0}" - {1}.
Shorthand notation: L = 0*1
L ={1,01,001,0001,...}

Question 2
How does a C program to “recognize” strings in L look like? J

8/13

Automata

Benefit of Hindsight - C Code

// Returns true if w is in the language 0*1
bool recognize(const charx w) {
int state = @; // 0: start, 1: accept, 2: fail
int len = strlen(w);
for (int 1 = 0; 1 < len; i++) {
char input = w[i];
if (state = 0) { // In start state
if (input = '0') state = 0;
else if (input = '1') state = 1;
else state = 2; // Invalid char
} else if (state = 1) { // accept state
state = 2; // fail if unexpected char

}

// If state is 2 (fail), it stays 2
}
return (state = 1);

- The loop processes
the string one
character at a time

- The state variable
is the machine's only

memory

- The if/else logic

represents the
program'’s rules or
transitions.

9/13

Automata

Benefit of Hindsight - Stripping the Syntax

Input - const charx w

Read-Only Input: The const char* w represents a read-only input tape. We can
inspect the input string but not change it

One-Way Movement: The for loop, which processes the string from left to right,
models a one-way read head. We read one symbol at a time and never go back.

10/13

Automata

Benefit of Hindsight - Stripping the Syntax

State variable could only be in one of three states:
- State 0 (gy): "We have only seen zeros so far.” —

- State 1 (g¢;): "We have seen zero or more zeros, followed by exactly one 1" —
accepting state

- State 2 (qy,;;): "We have seen an invalid sequence (e.g., a ‘0" after a '1’, or a

second '1')." — reject state.

Our program is just an implementation of an abstract machine that
has a unidirectional read-only access to input
has a finite number of states
moves between these states based on predefined rules.

This abstract machine is a Finite Automaton!

11/13

Deterministic Finite Automata (DFA)

Deterministic Finite Automata (DFA)

Formal Definition

DFA is a 5-tuple A = (Q, %, 9, ¢y, F)

‘symbol’
Q
by
0
9 € Q
FcQ

description

finite set of states

underlying finite alphabet
transition function between states
start state

accepting states

in our code

state € {0,1,2}
Y¥={0, 1}

the ‘core logic' in C code
state=0

state=1

12/13

Deterministic Finite Automata (DFA)

Deterministic Finite Automata (DFA)
Visualizing DFA

State Diagram is the intuitive way we visualize and work with DFAs
Conventions: Our DFA for L = 0*1:
States () are circles

Start state (g,) has an
incoming arrow labeled start
Accepting states (F') are
double circles

Transitions (&) are arrows
between states, labeled with
input symbols from X

13/13

	Recap
	Automata
	Deterministic Finite Automata (DFA)

