CS304: Automata and Formal Languages

Lec 5

DFA and Regular Languages

Rachit Nimavat

August 7, 2025

Outline

- Recap
- The Extended Transition Function
- Regular Languages
- Oesigning DFAs

Alphabet Σ : A finite, non-empty set of symbols

String w: A finite sequence of symbols taken from an alphabet

Language L: A set of strings over a particular alphabet

Consider $\Sigma = \left\{0,1\right\}$ and $L = \left\{0\right\}^* \left\{1\right\} \equiv 0^*1.$

Benefit of Hindsight - C Code

```
// Returns true if w is in the language 0*1
bool recognize(const char* w) {
    int state = 0; // 0: start, 1: accept, 2: fail
    int len = strlen(w);
   for (int i = 0: i < len: i++) {
        char input = w[i]:
        if (state = 0) { // In start state
           if (input = '0') state = 0:
            else if (input = '1') state = 1;
           else state = 2: // Invalid char
        } else if (state = 1) { // accept state
            state = 2; // fail if unexpected char
        // If state is 2 (fail). it stays 2
    return (state = 1);
```

- The loop processes the string one character at a time
- The state variable is the machine's only memory
- The if/else logic represents the program's **rules** or **transitions**.

Deterministic Finite Automata (DFA)

Formal Definition

DFA is a 5-tuple $A = (Q, \Sigma, \delta, q_0, F)$

'symbol'	description
Q	finite set of states
Σ	underlying finite alphabet
δ	transition function between states
$q_0 \in Q$	start state
$F \subseteq Q$	accepting states

in our code

 $\begin{array}{l} \texttt{state} \in \{0,1,2\} \\ \Sigma = \{ \text{'0', '1'} \} \\ \texttt{the 'core logic' in C code} \\ \texttt{state} = 0 \\ \texttt{state} = 1 \end{array}$

Deterministic Finite Automata (DFA)

Visualizing DFA

State Diagram is the intuitive way we visualize and work with DFAs

Conventions:

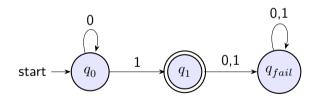
States Q are circles

Start state (q_0) has an incoming arrow labeled start

Accepting states (F) are double circles

Transitions (δ) are arrows between states, labeled with input symbols from Σ

Our DFA for $L=0^*1$:



How does a DFA compute?

The 'standard' transition function δ defines a single step of computation.

 $\delta: Q \times \Sigma \mapsto Q$ answers: If I am in state q and read symbol a, what state do I move to?

The 'extended' transition function $\hat{\delta}$ defines a leap of computation.

 $\hat{\delta}:Q imes\Sigma^*\mapsto Q$ answers:

If I am in state q and read a (sub)string w, what state do I move to?

Recursive Defn of $\hat{\delta}$.

Base case. For any $q \in Q$, define $\hat{\delta}(q, \epsilon) = q$

Recursive step. For any $q\in Q$ and string $w\in \Sigma^*$, define $\hat{\delta}(q,wa)=\delta(\hat{\delta}(q,w),a)$

Where does successively applying δ for each symbol of w leads us to?

e.g. w=001 on DFA $A=(Q,\Sigma,\delta,q_0,\{q_1\})$ for $L=0^*1$. $\hat{\delta}(q_0,\epsilon)=q_0$, $\hat{\delta}(q_0,0)=q_0$, $\hat{\delta}(q_0,00)=q_0$, $\hat{\delta}(q_0,001)=q_1$.

DFA and Languages

Consider a DFA $A=(Q,\Sigma,\delta,q_0,F)$. A accepts a string $w\in\Sigma^*$ if $\hat{\delta}(q_0,w)\in F$.

Language of a DFA. The language recognized by a A, denoted L(A), is the set of all strings that A accepts:

$$L(A) = \left\{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \right\}$$

Regular Languages. A language L is called a **regular language** if there exists some DFA A such that L = L(A).

 $\Sigma = \{0, 1\}$. $L = \{w \mid w \text{ has even number of } 0\}$.

What do we need to remember as we read a string? We only need to know if the count of 0s seen so far is even or odd.

State q_{even} : we've seen even number of 0s (also, the start state)

State q_{odd} : we've seen odd number of 0s

Accepting states? q_{even}

 $\begin{array}{c} 1 \\ 0 \\ q_{\rm even} \end{array}$

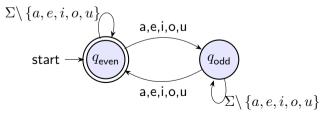
 $\Sigma = \{a, b, \dots, z\}.$ $L = \{w \mid w \text{ has even number of vowels}\}.$

What do we need to remember as we read a string? We only need to know if the count of vowels seen so far is even or odd.

State q_{even} : we've seen even number of vowels (also, the start state)

State q_{odd} : we've seen odd number of vowels

Accepting states? q_{even}



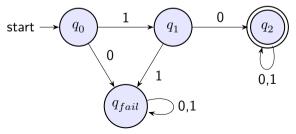
 $\Sigma = \{0,1\}$. $L = \{w \mid w \text{ starts with } 10\}$ Fate is sealed by the first two symbols. We need the following states to track our progress:

 q_0 : start state. We haven't read any symbols yet.

 q_1 : first symbol was 1. Hoping for a 0 next.

 q_2 : first two symbols were 10. Accepting state. Any symbol we see from now on keeps us in this accepting state.

 q_{fail} : seen a sequence that makes it impossible to start with 10.



 $\Sigma = \{0,1\}.$ $L = \{w \mid w \text{ does not contain substring } 11\}.$

