Rachit Nimavat

August 7, 2025

1/12

Outline

@ Recap

© The Extended Transition Function
© Regular Languages

Designing DFAs
gning

2/12

Recap

Alphabet X: A finite, non-empty set of symbols
String w: A finite sequence of symbols taken from an alphabet

Language L: A set of strings over a particular alphabet

Consider ¥ = {0,1} and L = {0} {1} = 0*1.

3/12

Recap

Benefit of Hindsight - C Code

// Returns true if w is in the language 0*1
bool recognize(const charx w) {
int state = @; // 0: start, 1: accept, 2: fail
int len = strlen(w);
for (int 1 = 0; 1 < len; i++) {
char input = w[i];
if (state = 0) { // In start state
if (input = '0') state = 0;
else if (input = '1') state = 1;
else state = 2; // Invalid char
} else if (state = 1) { // accept state
state = 2; // fail if unexpected char

}

// If state is 2 (fail), it stays 2
}
return (state = 1);

- The loop processes
the string one
character at a time

- The state variable
is the machine's only

memory

- The if/else logic

represents the
program'’s rules or
transitions.

4/12

Recap

Deterministic Finite Automata (DFA)

Formal Definition

DFA is a 5-tuple A = (Q, %, 9, ¢y, F)

‘symbol’
Q
by
0
9 € Q
FcQ

description

finite set of states

underlying finite alphabet
transition function between states
start state

accepting states

in our code

state € {0,1,2}
Y¥={0, 1}

the ‘core logic' in C code
state=0

state=1

5/12

Recap

Deterministic Finite Automata (DFA)
Visualizing DFA

State Diagram is the intuitive way we visualize and work with DFAs
Conventions: Our DFA for L = 0*1:
States () are circles

Start state (g,) has an
incoming arrow labeled start
Accepting states (F') are
double circles

Transitions (&) are arrows
between states, labeled with
input symbols from X

6/12

The Extended Transition Function

How does a DFA compute?

The ‘standard’ transition function ¢ defines a single step of computation.
0:Q XX @Q answers: If | am in state ¢ and read symbol a, what state do | move to?

The ‘extended’ transition function § defines a leap of computation.
d:Q X X" @ answers:
If I am in state ¢ and read a (sub)string w, what state do | move to?

Recursive Defn of 4.
Base case. For any ¢ € Q, define g(q7 €) =gq
Recursive step. For any ¢ € @ and string w € ¥*, define 5(q,wa) = 5(5(q,w),a)
Where does successively applying § for each symbol of w leads us to?
e.g. w=001 on DFA A = (Q,%,9,qy,{q;}) for L = 0*1. 5(q0,e) = q, 5((]0,()) = q,
S(%vOO) = 4o, 5((107001) =4

7/12

Regular Languages

DFA and Languages

Consider a DFA A = (Q, %, 0, qy, F'). A accepts a string w € ¥* if §(qy, w) € F.

Language of a DFA. The language recognized by a A, denoted L(A), is the set of all
strings that A accepts: R
L(A) = {w € X" d(qy,w) € F}

Regular Languages. A language L is called a regular language if there exists some
DFA A such that L = L(A).

8/12

Designing DFAs
Example 1

¥ ={0,1}. L = {w|w has even number of 0}.
What do we need to remember as we read a string? We only need to know if the count of
Os seen so far is even or odd.

State ¢.,.,: We've seen even number of Os (also, the start state)
State ¢ qq: We've seen odd number of Os
Accepting states? ¢ en

9/12

Designing DFAs
Example 2

¥ ={a,b,...,z}. L ={w|w has even number of vowels}.
What do we need to remember as we read a string? We only need to know if the count of
vowels seen so far is even or odd.

State ¢.,.,: We've seen even number of vowels (also, the start state)
State g qq: We've seen odd number of vowels
Accepting states? @ en

Y\ {a,e,i,0,u}

a,e,i,ou

\{a,e,i,0,u}

10/12

Designing DFAs
Example 3

¥ ={0,1}. L = {w|w starts with 10} Fate is sealed by the first two symbols. We need
the following states to track our progress:
qo: start state. We haven't read any symbols yet.
q;: first symbol was 1. Hoping for a 0 next.
g first two symbols were 10. Accepting state. Any symbol we see from now on
keeps us in this accepting state.
gail: Seen a sequence that makes it impossible to start with 10.

11/12

Designing DFAs

Example 4

¥ ={0,1}. L = {w|w does not contain substring 11}.

0,1
0
g
start . Qdouble 1
0

12/12

	Recap
	The Extended Transition Function
	Regular Languages
	Designing DFAs

