Rachit Nimavat

August 8, 2025

1/12



Outline

@ Recap
O NFA

Designing NFAs
gning

2/12



Recap

Alphabet X: A finite, non-empty set of symbols
String w: A finite sequence of symbols taken from an alphabet

Language L: A set of strings over a particular alphabet

Consider ¥ = {0,1} and L = {0} {1} = 0*1.

3/12



Recap

Deterministic Finite Automata (DFA)

Formal Definition

DFA is a 5-tuple A = (Q, %, 9, ¢y, F)

‘symbol’
Q
by
0
9 € Q
FcQ

description

finite set of states

underlying finite alphabet
transition function between states
start state

accepting states

in our code

state € {0,1,2}
Y¥={0, 1}

the ‘core logic' in C code
state=0

state=1

4/12



Recap

Deterministic Finite Automata (DFA)
Visualizing DFA

State Diagram is the intuitive way we visualize and work with DFAs
Conventions: Our DFA for L = 0*1:
States () are circles

Start state (g,) has an
incoming arrow labeled start
Accepting states (F') are
double circles

Transitions (&) are arrows
between states, labeled with
input symbols from X

5/12



NFA

Shortcomings of DFA

Consider L = {w | the third-last symbol in w is 1} over ¥ = {0,1}. A DFA would need
to "remember” the last three symbols it has seen.

How can we
simplify this
mess?

Reason for this
complication is:
DFA is very
strict!

6/12



NFA
Pushing the Boundaries: Nondeterminism

DFA is very strict.
What if we relaxed the rules?

What if a state could have multiple outgoing arrows for the same symbol?
What if a state could have zero outgoing arrows for a symbol?

What if a machine could transition between states without reading any input (i.e., on
the empty string ¢)?

"Nondeterminism”
Read along until it sees a '1’
Guess that this "1’ might be the third to last symbol
Verify that exactly two more symbols follow

7/12



NFA

Nondeterministic Finite Automata : NFA

Consider L = {w | the third-last symbol in w is 1} over ¥ = {0,1}.
in state g, look for 1
if we see 1, guess we are at third-last position and transition to ¢;
transition to g, and g5 on seeing subsequent symbols

if we end up at g5, we accept

0.1

start ') 1 @ 0.1 ds 01

much simpler to describe than DFA!

8/12



NFA

NFA: Formal Definition

An NFA is also a 5-tuple A = (Q, %, 9, qy, F'), where
Q: finite set of states
3. finite alphabet
qgo: single starting state
F': set of accepting states
§:Q x (ZU{e}) 29
Y U {e}: input can be a symbol from ¥ or the empty string ¢
2@: also referred as P(Q) (power set of ), means “the set of all states”

9/12



NFA

How an NFA Computes: Informal

Consider NFA A = (Q, %, 6, qy, F') with input string w.
‘We track its computation as a set of active states.

- Initially, “active states” is {q,}.

- When you read a symbol z, look at all the states you are currently in. Find all the

states you can get to from them by reading x. This new set is your next set of active
states.

- Repeat for the whole string w.

Acceptance: Accept w if, after reading all of w, the set of active states contains at
least one state of F

Rejection: Reject otherwise, i.e, after reading all of w, the set of active states does not
contain any state of F’

10/12



Designing NFAs

Example 1

¥ ={0,1}. L ={w|w ends with 10}

0,1

OO
start —

11/12



Designing NFAs

Example 2

¥ ={0,1}. L = {w|w contains substring 11}.

0,1

1
start H

12/12



	Recap
	NFA
	Designing NFAs

