
CS304: Automata and Formal Languages
Lec 6

Nondeterministic Finite Automata (NFA)

Rachit Nimavat

August 8, 2025

1 / 12



Outline

1 Recap

2 NFA

3 Designing NFAs

2 / 12



Recap

Alphabet Σ: A finite, non-empty set of symbols

String 𝑤: A finite sequence of symbols taken from an alphabet

Language 𝐿: A set of strings over a particular alphabet

Consider Σ = {0, 1} and 𝐿 = {0}∗ {1} ≡ 0∗1.

3 / 12



Recap

Deterministic Finite Automata (DFA)
Formal Definition

DFA is a 5-tuple 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 )

‘symbol’

𝑄
Σ
𝛿
𝑞0 ∈ 𝑄
𝐹 ⊆ 𝑄

description

finite set of states
underlying finite alphabet
transition function between states
start state
accepting states

in our code

state ∈ {0, 1, 2}
Σ = {‘0’, ‘1’}
the ‘core logic’ in C code
state = 0
state = 1

4 / 12



Recap

Deterministic Finite Automata (DFA)
Visualizing DFA

State Diagram is the intuitive way we visualize and work with DFAs
Conventions:

States 𝑄 are circles
Start state (𝑞0) has an
incoming arrow labeled start
Accepting states (𝐹 ) are
double circles
Transitions (𝛿) are arrows
between states, labeled with
input symbols from Σ

Our DFA for 𝐿 = 0∗1:

𝑞0start 𝑞1 𝑞𝑓𝑎𝑖𝑙

0

1 0,1

0,1

5 / 12



NFA

Shortcomings of DFA
Consider 𝐿 = {𝑤 | the third-last symbol in w is 1} over Σ = {0, 1}. A DFA would need
to ”remember” the last three symbols it has seen.

𝑞000start 𝑞001 𝑞010 𝑞011

𝑞100 𝑞101 𝑞110 𝑞111

0

1
0

1

0
1 0 10

1

0
1

0

1

0
1

How can we
simplify this
mess?
Reason for this
complication is:
DFA is very
strict!

6 / 12



NFA

Pushing the Boundaries: Nondeterminism
DFA is very strict.
What if we relaxed the rules?

What if a state could have multiple outgoing arrows for the same symbol?
What if a state could have zero outgoing arrows for a symbol?
What if a machine could transition between states without reading any input (i.e., on
the empty string 𝜀)?

”Nondeterminism”
Read along until it sees a ’1’
Guess that this ’1’ might be the third to last symbol
Verify that exactly two more symbols follow

7 / 12



NFA

Nondeterministic Finite Automata : NFA

Consider 𝐿 = {𝑤 | the third-last symbol in w is 1} over Σ = {0, 1}.
in state 𝑞0, look for 1
if we see 1, guess we are at third-last position and transition to 𝑞1
transition to 𝑞2 and 𝑞3 on seeing subsequent symbols
if we end up at 𝑞3, we accept

𝑞0start 𝑞1 𝑞2 𝑞3

0,1

1 0,1 0,1

much simpler to describe than DFA!

8 / 12



NFA

NFA: Formal Definition

An NFA is also a 5-tuple 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ), where
𝑄: finite set of states
Σ: finite alphabet
𝑞0: single starting state
𝐹 : set of accepting states
𝛿 ∶ 𝑄 × (Σ ∪ {𝜀}) ↦ 2𝑄

Σ ∪ {𝜀}: input can be a symbol from Σ or the empty string 𝜀
2𝑄: also referred as 𝒫(𝑄) (power set of 𝑄), means “the set of all states”

9 / 12



NFA

How an NFA Computes: Informal

Consider NFA 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) with input string 𝑤.
‘We track its computation as a set of active states.

- Initially, “active states” is {𝑞0}.
- When you read a symbol 𝑥, look at all the states you are currently in. Find all the
states you can get to from them by reading 𝑥. This new set is your next set of active
states.
- Repeat for the whole string 𝑤.

Acceptance: Accept 𝑤 if, after reading all of 𝑤, the set of active states contains at
least one state of 𝐹
Rejection: Reject otherwise, i.e, after reading all of 𝑤, the set of active states does not
contain any state of 𝐹

10 / 12



Designing NFAs

Example 1

Σ = {0, 1}. 𝐿 = {𝑤 | 𝑤 ends with 10}

𝑞0start 𝑞1 𝑞2

0,1

1 0

11 / 12



Designing NFAs

Example 2

Σ = {0, 1}. 𝐿 = {𝑤 | 𝑤 contains substring 11}.

𝑞0start 𝑞1 𝑞2

0,1

1 1

0,1

12 / 12


	Recap
	NFA
	Designing NFAs

