CS304: Automata and Formal Languages

Lec 7

DFA = NFA

Rachit Nimavat

August 12, 2025

Outline

- Recap
- Power of NFAs
- Informal Proof
- NFA to DFA conversion examples
- Informal Proof

Alphabet Σ : A finite, non-empty set of symbols

String w: A finite sequence of symbols taken from an alphabet

Language L: A set of strings over a particular alphabet

Consider $\Sigma = \left\{0,1\right\}$ and $L = \left\{0\right\}^* \left\{1\right\} \equiv 0^*1.$

Deterministic Finite Automata (DFA)

Formal Definition

DFA is a 5-tuple $A=(Q,\Sigma,\delta,q_0,F)$

'symbol'	description
$\begin{array}{l} Q \\ \Sigma \\ \delta \\ q_0 \in Q \\ F \subseteq Q \end{array}$	finite set of states underlying finite alphabet transition function between states start state accepting states

in our code

 $\begin{array}{l} \texttt{state} \in \{0,1,2\} \\ \Sigma = \{ \text{'0', '1'} \} \\ \texttt{the 'core logic' in C code} \\ \texttt{state} = 0 \\ \texttt{state} = 1 \end{array}$

Deterministic Finite Automata (DFA)

Visualizing DFA

State Diagram is the intuitive way we visualize and work with DFAs

Conventions:

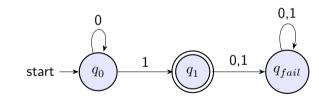
States Q are circles

Start state (q_0) has an incoming arrow labeled start

Accepting states (F) are double circles

Transitions (δ) are arrows between states, labeled with input symbols from Σ

Our DFA for $L=0^*1$:



Non-Deterministic Finite Automata (NFA)

Visualizing NFA

State Diagram is the intuitive way we visualize and work with NFAs

Conventions:

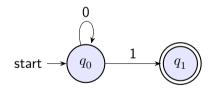
States Q are circles

Start state (q_0) has an incoming arrow labeled start

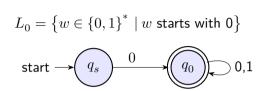
Accepting states (F) are double circles

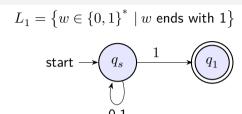
Transitions (δ) are arrows between states, labeled with input symbols from Σ

Our NFA for $L=0^*1$:

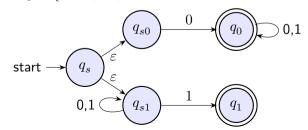


NFA Example





 $L = L_0 \lor L_1 = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ or } w \text{ ends with } 1\}.$



NFA vs DFA

NFA

$$N=(Q,\Sigma,\delta,q_0,F)$$

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \mapsto 2^Q$$

Multiple Transitions. Possibly multiple outgoing arrows for same symbol

Zero Transitions. Possibly no outgoing arrow for a symbol (that path "dies" has license to kill) ε -**Transitions.** Can change state without consuming an input symbol

DFA

$$D = (Q, \Sigma, \delta, q_0, F)$$

$$\delta:Q\times\Sigma\mapsto Q$$

No such powers!

NFA = DFA

Theorem 2.1

A language is recognized by an NFA if and only if it is recognized by a DFA.

To prove that the set of languages recognized by NFAs is the same as the set of languages recognized by DFAs, we must show two things:

- 1 (Easy Part) For every DFA, there is an equivalent NFA that accepts the same language. trivial!!
- 2 (Hard Part) For every NFA, there is an equivalent DFA that accepts the same language. we'll prove this today

Proof Idea: Assume NFA doesn't have any ε -transitions

Let the NFA be $N=(Q,\Sigma,\delta,q_0,F)$. We will construct a DFA $D=(Q',\Sigma,\delta',q_0',F')$ that recognizes the same language.

The Construction of D.

States: $Q'=2^Q$ each state of DFA corresponds to a subset of states of NFA

Start State: $q_0' = \{q_0\}$

Accepting States: $F' = \{q' \in Q' \mid q' \cap F \neq \emptyset\}$

Transition Function: For a given state $q' \in Q'$ in DFA and an input symbol $a \in \Sigma$, the next state is one corresponding to the union of all states that the NFA could transition to from any state in q'.

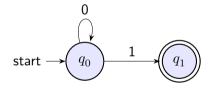
$$\delta'(q',a) = \bigcup_{q \in q'} \delta(q,a)$$

Proof of Correctness. Need to prove that for all strings w over Σ , $\hat{\delta}'(q_0',w)=\hat{\delta}(q_0,w)$. Recall, $\hat{\delta}$ is the <u>extended transition function</u>. On board!

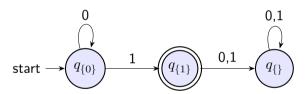
Example 1

$$L = 0*1.$$

NFA

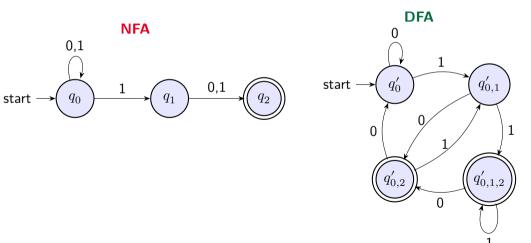


DFA



Example 2

 $L = \big\{w \in \{0,1\}^* \mid \text{ second-last symbol of w is } 1\big\}.$



ε -closure

 ε -closure is the set of all states reachable from a given state using only ε -transitions

- For a single state q, $\varepsilon_{
m closure}(q)$ is the set of states that can be reached from state q by following zero or more ε -transitions

notice:
$$q \in \varepsilon_{\mathsf{closure}}(q)$$

- For a set $S \subseteq Q$ of states,

$$\varepsilon_{\mathsf{closure}}(S) := \bigcup_{q \in S} \varepsilon_{\mathsf{closure}}(q)$$

Proof Idea: With ε -transitions

Let the NFA be $N=(Q,\Sigma,\delta,q_0,F)$. We will construct a DFA $D=(Q',\Sigma,\delta',q_0',F')$ that recognizes the same language.

The Construction of D.

States: $Q' = 2^Q$, the sets of states of NFA

Start State: $q_0' = \varepsilon_{\text{closure}}(q_0)$ Accepting States: $F' = \{q' \in Q' \mid q' \cap F \neq \emptyset\}$

Transition Function: For a given state $q' \in Q'$ in DFA and an input symbol $a \in \Sigma$, the next state is one corresponding to the union of all states that the NFA could transition to from any state in q'.

$$\delta'(q',a) = \bigcup_{q \in q'} \varepsilon_{\mathsf{closure}}(\delta(q,a))$$

Proof of Correctness. Need to prove that for all strings w over Σ , $\hat{\delta}'(q_0',w)=\hat{\delta}(q_0,w)$. Recall, $\hat{\delta}$ is the extended transition function. On board!