
CS304: Automata and Formal Languages
Lec 8

Regular Languages, Regular Expressions, and Kleene’s Theorem

Rachit Nimavat

August 14, 2025

1 / 19



Outline

1 Recap

2 Regular Expressions

3 Regular Languages

4 Proving Kleene’s Theorem

2 / 19



Recap

Alphabet Σ: A finite, non-empty set of symbols

String 𝑤: A finite sequence of symbols taken from an alphabet

Language 𝐿: A set of strings over a particular alphabet

Consider Σ = {0, 1} and 𝐿 = {0}∗ {1} ≡ 0∗1.

3 / 19



Recap

Deterministic Finite Automata (DFA)
Formal Definition

DFA is a 5-tuple 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 )

‘symbol’

𝑄
Σ
𝛿
𝑞0 ∈ 𝑄
𝐹 ⊆ 𝑄

description

finite set of states
underlying finite alphabet
transition function between states
start state
accepting states

in our code

state ∈ {0, 1, 2}
Σ = {‘0’, ‘1’}
the ‘core logic’ in C code
state = 0
state = 1

4 / 19



Recap

Deterministic Finite Automata (DFA)
Visualizing DFA

State Diagram is the intuitive way we visualize and work with DFAs
Conventions:

States 𝑄 are circles
Start state (𝑞0) has an
incoming arrow labeled start
Accepting states (𝐹 ) are
double circles
Transitions (𝛿) are arrows
between states, labeled with
input symbols from Σ

Our DFA for 𝐿 = 0∗1:

𝑞0start 𝑞1 𝑞𝑓𝑎𝑖𝑙

0

1 0,1

0,1

5 / 19



Recap

Non-Deterministic Finite Automata (NFA)
Visualizing NFA

State Diagram is the intuitive way we visualize and work with NFAs
Conventions:

States 𝑄 are circles
Start state (𝑞0) has an
incoming arrow labeled start
Accepting states (𝐹 ) are
double circles
Transitions (𝛿) are arrows
between states, labeled with
input symbols from Σ

Our NFA for 𝐿 = 0∗1:

𝑞0start 𝑞1

0

1

6 / 19



Recap

NFA vs DFA

NFA
𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 )

𝛿 ∶ 𝑄 × (Σ ∪ {𝜀}) ↦ 2𝑄

Multiple Transitions. Possibly
multiple outgoing arrows for same
symbol
Zero Transitions. Possibly no
outgoing arrow for a symbol (that
path ”dies” has license to kill)
𝜀-Transitions. Can change state
without consuming an input symbol

DFA
𝐷 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 )

𝛿 ∶ 𝑄 × Σ ↦ 𝑄

No such powers!

Theorem 1.1
A language is recognized by an NFA if and only if it is recognized by a DFA.

7 / 19



Recap

Example

𝐿1 = {𝑤 ∈ {0, 1}∗ | 𝑤 starts with 0}

𝑞𝑠start 𝑞0
0 0,1

𝐿2 = {𝑤 ∈ {0, 1}∗ | 𝑤 ends with 1}

𝑞𝑠start 𝑞1

0,1

1

𝐿 = 𝐿0 ∨ 𝐿1 = {𝑤 ∈ {0, 1}∗ | 𝑤 starts with 0 or 𝑤 ends with 1}.

𝑞𝑠start

𝑞𝑎

𝑞𝑑

𝑞𝑏

𝑞𝑐

0 0,1

0,1 1

𝜀
𝜀 𝑞𝑠𝑎𝑑start

𝑞𝑏𝑑 𝑞𝑏𝑐𝑑

𝑞𝑐𝑑 𝑞𝑑

0
0

1

0
1

1

1

0

1
0

8 / 19



Recap

Example - Simplified DFA

𝐿 = 𝐿0 ∨ 𝐿1 = {𝑤 ∈ {0, 1}∗ | 𝑤 starts with 0 or 𝑤 ends with 1}.

𝑞𝑠𝑎𝑑start

𝑞𝑔𝑜𝑜𝑑

𝑞𝑐𝑑 𝑞𝑑

0

1

1

0

1 0

0,1

9 / 19



Regular Expressions

What Next?

- we’ve learned so far to describe languages using machines: DFAs and NFAs
- they are good at recognizing strings, but are cumbersome to write
- consider find function in a text editor

we provide it a pattern and ask to find all matching strings in the text
we don’t give it a DFA
that ‘pattern-language’ is built on Regular Expressions (regex or RE)

10 / 19



Regular Expressions

Regular Expressions (RE)
Recursive Defn

A regular expression (RE) over an alphabet Σ is defined as follows:

Primitive Regular Expressions (Base case):
∅: is an RE denoting empty language 𝐿(∅) = {}
𝜀: is a RE the language containing only the empty string 𝐿(𝜀) = {𝜀}
𝑎: is an RE for a symbol 𝑎 ∈ Σ denoting 𝐿(𝑎) = {𝑎}

Operations (Inductive Step): If 𝑅 and 𝑆 are RE, then the following are also REs:
Union (+ or |): (𝑅 + 𝑆) is an RE, where 𝐿(𝑅 + 𝑆) = 𝐿(𝑅) ∪ 𝐿(𝑆)
e.g. 𝑎 + 𝑏 describes the language {𝑎, 𝑏}
Concat (⋅): (𝑅𝑆) is an RE, where 𝐿(𝑅𝑆) = 𝐿(𝑅)𝐿(𝑆)
e.g. (𝑎 + 𝑏)𝑐 describes the language {𝑎𝑐, 𝑏𝑐}
Kleene Star (∗): (𝑅∗) is an RE, where 𝐿(𝑅∗) = (𝐿(𝑅))∗

e.g. 𝑎∗ describes the language {𝜀, 𝑎, 𝑎𝑎, 𝑎𝑎𝑎, … , }
11 / 19



Regular Expressions

Regular Expressions
Examples

RE 0∗1 is any number of 0’s followed by a 1
Language described by 0∗1: {1, 01, 001, 0001, … , }

RE (𝑎 + 𝑏)∗ is any string composed of 𝑎’s and 𝑏’s
Language described by (𝑎 + 𝑏)∗: {𝜀, 𝑎, 𝑏, 𝑎𝑏, 𝑏𝑎, 𝑎𝑎𝑏, 𝑎𝑏𝑎, 𝑏𝑎𝑎, … , }

(0 + 1)∗00(0 + 1)∗ is any binary string with 00 as substring

RE (𝑎 + 𝜀)𝑏 is an optional a followed by b
Language described by (𝑎 + 𝜀)𝑏: {𝑏, 𝑎𝑏}

12 / 19



Regular Expressions

Regular Expressions
Operator Precedence

To reduce parentheses, there is a standard order of operations. The operators are
evaluated in the following order, from highest to lowest precedence:

1 Kleene Star ∗ think: power
2 Concat ⋅ think: multiplication
3 Union + or | think: addition

RE 𝑎 + 𝑏𝑐∗ is parsed as: 𝑎 + (𝑏(𝑐∗)).
Language described by 𝑎 + 𝑏𝑐∗: {𝑎, 𝑏, 𝑏𝑐, 𝑏𝑐𝑐, 𝑏𝑐𝑐𝑐, … , }

RE (𝑎 + 𝑏)𝑐∗ is parsed as: (𝑎 + 𝑏)(𝑐∗).
Language described by (𝑎 + 𝑏)𝑐∗: {𝑎, 𝑏, 𝑎𝑐, 𝑏𝑐, 𝑎𝑐𝑐, 𝑏𝑐𝑐, … , }

13 / 19



Regular Languages

Regular Language

Defn: A language 𝐿 is called a regular language if and only if there exists a regular
expression 𝑅 that describes it: 𝐿 = 𝐿(𝑅)

But wait, didn’t we already define regular languages earlier?
A language 𝐿 is regular iff ‘if and only if’:

- ∃ an NFA 𝐴 such that 𝐿 = 𝐿(𝐴)
- or equivalently, ∃ a DFA 𝐷 such that 𝐿 = 𝐿(𝐷)

14 / 19



Regular Languages

Regular Language

Theorem 3.1 (Kleene’s Theorem)
All these definitions are equivalent:

- ∃ a DFA 𝐷 such that 𝐿 = 𝐿(𝐷)
- ∃ an NFA 𝐴 such that 𝐿 = 𝐿(𝐴)
- ∃ an RE 𝑅 such that 𝐿 = 𝐿(𝑅)

𝐷𝐹𝐴

𝑁𝐹𝐴𝑅𝐸

trivial
power-set

recursive-construction

state-elimination

15 / 19



Proving Kleene’s Theorem

Kleene’s Theorem: RE ⟹ NFA
Step-by-step algorithm to convert an RE to an NFA

Primitive Regular Expressions (Base case):

- 𝑎 (where 𝑎 ∈ Σ)
- 𝜖
- ∅

RE NFA

𝑎 (where 𝑎 ∈ Σ)
𝑞0start 𝑞1

𝑎

𝜖
𝑞0start

∅
𝑞0start

16 / 19



Proving Kleene’s Theorem

Kleene’s Theorem: RE ⟹ NFA
Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

- 𝑅1 + 𝑅2 (union)

𝑅1 + 𝑅2

𝑞0start

𝑁(𝑅1)

𝑁(𝑅2)

𝑞𝐹

𝜀

𝜀

𝜀

𝜀

17 / 19



Proving Kleene’s Theorem

Kleene’s Theorem: RE ⟹ NFA
Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

- 𝑅1𝑅2
(concatenation)

𝑅1𝑅2

𝑞0start

𝑁(𝑅1) 𝑁(𝑅2) 𝑞𝐹

𝜀

𝜀 𝜀

18 / 19



Proving Kleene’s Theorem

Kleene’s Theorem: RE ⟹ NFA
Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

- 𝑅∗
1 (Kleene star)

𝑅∗

𝑞0start

𝑁(𝑅) 𝑞𝐹

𝜀

𝜀

𝜀

𝜀

19 / 19


	Recap
	Regular Expressions
	Regular Languages
	Proving Kleene's Theorem

