# CS304: Automata and Formal Languages

Lec 8

Regular Languages, Regular Expressions, and Kleene's Theorem

Rachit Nimavat

August 14, 2025

## Outline

- Recap
- Regular Expressions
- Regular Languages
- 4 Proving Kleene's Theorem

**Alphabet**  $\Sigma$ : A finite, non-empty set of symbols

**String** w: A finite sequence of symbols taken from an alphabet

**Language** L: A set of strings over a particular alphabet

Consider  $\Sigma = \left\{0,1\right\}$  and  $L = \left\{0\right\}^* \left\{1\right\} \equiv 0^*1.$ 

# Deterministic Finite Automata (DFA)

Formal Definition

DFA is a 5-tuple  $A = (Q, \Sigma, \delta, q_0, F)$ 

| 'symbol'        | description                        |
|-----------------|------------------------------------|
|                 |                                    |
| Q               | finite set of states               |
| $\Sigma$        | underlying finite alphabet         |
| $\delta$        | transition function between states |
| $q_0 \in Q$     | start state                        |
| $F \subseteq Q$ | accepting states                   |
|                 |                                    |

in our code

 $\begin{array}{l} \texttt{state} \in \{0,1,2\} \\ \Sigma = \{ \text{'0', '1'} \} \\ \texttt{the 'core logic' in C code} \\ \texttt{state} = 0 \\ \texttt{state} = 1 \end{array}$ 

# Deterministic Finite Automata (DFA)

Visualizing DFA

**State Diagram** is the intuitive way we visualize and work with DFAs

#### **Conventions:**

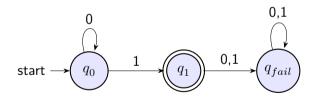
States Q are circles

Start state  $(q_0)$  has an incoming arrow labeled start

Accepting states (F) are double circles

Transitions ( $\delta$ ) are arrows between states, labeled with input symbols from  $\Sigma$ 

Our DFA for  $L=0^*1$ :



# Non-Deterministic Finite Automata (NFA)

Visualizing NFA

**State Diagram** is the intuitive way we visualize and work with NFAs

#### **Conventions:**

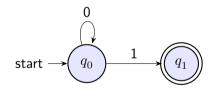
States Q are circles

Start state  $(q_0)$  has an incoming arrow labeled start

Accepting states (F) are double circles

Transitions ( $\delta$ ) are arrows between states, labeled with input symbols from  $\Sigma$ 

#### Our NFA for $L=0^*1$ :



#### NFA vs DFA

#### **NFA**

$$N = (Q, \Sigma, \delta, q_0, F)$$

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \mapsto 2^Q$$



**Multiple Transitions.** Possibly multiple outgoing arrows for same symbol

**Zero Transitions.** Possibly no outgoing arrow for a symbol (that path "dies" has license to kill)  $\varepsilon$ -**Transitions.** Can change state without consuming an input symbol

#### **DFA**

$$D = (Q, \Sigma, \delta, q_0, F)$$

$$\delta:Q\times\Sigma\mapsto Q$$

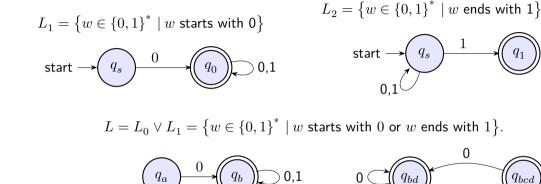
#### No such powers!



#### Theorem 1.1

A language is recognized by an NFA if and only if it is recognized by a DFA.

## Example



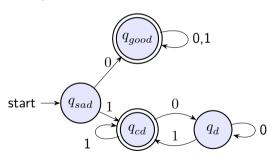
start  $\longrightarrow (q_{sad})$ 

 $q_d$ 

 $q_{cd}$ 

## Example - Simplified DFA

 $L = L_0 \vee L_1 = \big\{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ or } w \text{ ends with } 1\big\}.$ 



#### What Next?

- we've learned so far to describe languages using machines: DFAs and NFAs
- they are good at recognizing strings, but are cumbersome to write
- consider find function in a text editor
  - we provide it a pattern and ask to find all matching strings in the text we don't give it a DFA
  - that 'pattern-language' is built on Regular Expressions (regex or RE)

# Regular Expressions (RE)

Recursive Defn

A regular expression (RE) over an alphabet  $\Sigma$  is defined as follows:

### Primitive Regular Expressions (Base case):

```
\emptyset : \text{ is an RE denoting empty language } L(\emptyset) = \{\}
```

$$\varepsilon$$
: is a RE the language containing only the empty string  $L(\varepsilon) = \{\varepsilon\}$   $a$ : is an RE for a symbol  $a \in \Sigma$  denoting  $L(a) = \{a\}$ 

Union (+ or |): (R+S) is an RE, where  $L(R+S)=L(R)\cup L(S)$ 

**Operations (Inductive Step):** If R and S are RE, then the following are also REs:

```
e.g. a+b describes the language \{a,b\}
Concat (·): (RS) is an RE, where L(RS) = L(R)L(S)
e.g. (a+b)c describes the language \{ac,bc\}
```

Kleene Star (\*): 
$$(R^*)$$
 is an RE, where  $L(R^*) = (L(R))^*$ 

# Regular Expressions

#### Examples

RE 0\*1 is any number of 0's followed by a 1

Language described by  $0^*1: \{1, 01, 001, 0001, \dots, \}$ 

RE  $(a+b)^*$  is any string composed of a's and b's

Language described by  $(a+b)^* \colon \left\{ \varepsilon, a, b, ab, ba, aab, aba, baa, \dots, \right\}$ 

(0+1)\*00(0+1)\* is any binary string with 00 as substring

RE  $(a + \varepsilon)b$  is an optional a followed by b

Language described by  $(a + \varepsilon)b$ :  $\{b, ab\}$ 

# Regular Expressions

Operator Precedence

To reduce parentheses, there is a standard order of operations. The operators are evaluated in the following order, from highest to lowest precedence:

- 1 Kleene Star \* think: power
- 2 Concat · think: multiplication
- 3 Union + or | think: addition

$$\mathsf{RE}\ a + bc^* \ \mathsf{is} \ \mathsf{parsed} \ \mathsf{as:} \ a + (b(c^*)).$$

Language described by  $a + bc^*$ :  $\{a, b, bc, bcc, bccc, \dots, \}$ 

RE 
$$(a+b)c^*$$
 is parsed as:  $(a+b)(c^*)$ .

Language described by  $(a + b)c^*$ :  $\{a, b, ac, bc, acc, bcc, \dots, \}$ 

# Regular Language

**Defn:** A language L is called a <u>regular language</u> if and only if there exists a regular expression R that describes it: L=L(R)

But wait, didn't we already define regular languages earlier? A language L is regular iff 'if and only if':

- $\exists$  an NFA A such that L = L(A)
- or equivalently,  $\exists$  a DFA D such that L=L(D)

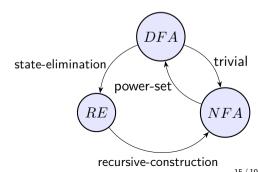
# Regular Language



#### Theorem 3.1 (Kleene's Theorem)

All these definitions are equivalent:

- $\exists$  a DFA D such that L = L(D)
- $\exists$  an NFA A such that L = L(A)
- $\exists$  an RE R such that L = L(R)



### Kleene's Theorem: RE ⇒ NFA

Step-by-step algorithm to convert an RE to an NFA  $\,$ 

### Primitive Regular Expressions (Base case):

- a (where  $a \in \Sigma$ )
- 6
- (

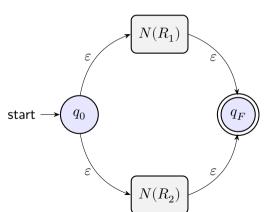
| RE                          | NFA                                               |
|-----------------------------|---------------------------------------------------|
| $a$ (where $a \in \Sigma$ ) | start $\longrightarrow q_0$ $\xrightarrow{a} q_1$ |
| $a$ (where $a \in \Delta$ ) |                                                   |
| $\epsilon$                  | $start \longrightarrow q_0$                       |
| Ø                           | $start \longrightarrow q_0$                       |

# Kleene's Theorem: RE $\implies$ NFA

Step-by-step algorithm to convert an RE to an NFA

### **Combining Machines (Inductive step):**

-  $R_1 + R_2$  (union)

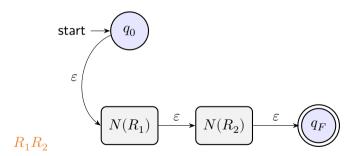


### Kleene's Theorem: RE ⇒ NFA

Step-by-step algorithm to convert an RE to an NFA

#### **Combining Machines (Inductive step):**

-  $R_1R_2$  (concatenation)



### Kleene's Theorem: RE ⇒ NFA

Step-by-step algorithm to convert an RE to an NFA

### Combining Machines (Inductive step):

-  $R_1^*$  (Kleene star)

