Rachit Nimavat

August 14, 2025

1/19



Outline

@ Recap

© Regular Expressions
© Regular Languages

@ Proving Kleene's Theorem

2/19



Recap

Alphabet X: A finite, non-empty set of symbols
String w: A finite sequence of symbols taken from an alphabet

Language L: A set of strings over a particular alphabet

Consider ¥ = {0,1} and L = {0} {1} = 0*1.

3/19



Recap

Deterministic Finite Automata (DFA)

Formal Definition

DFA is a 5-tuple A = (Q, %, 9, ¢y, F)

‘symbol’
Q
by
0
9 € Q
FcQ

description

finite set of states

underlying finite alphabet
transition function between states
start state

accepting states

in our code

state € {0,1,2}
Y¥={0, 1}

the ‘core logic' in C code
state=0

state=1

4/19



Recap

Deterministic Finite Automata (DFA)
Visualizing DFA

State Diagram is the intuitive way we visualize and work with DFAs
Conventions: Our DFA for L = 0*1:
States () are circles

Start state (g,) has an
incoming arrow labeled start
Accepting states (F') are
double circles

Transitions (&) are arrows
between states, labeled with
input symbols from X

5/19



Recap

Non-Deterministic Finite Automata (NFA)
Visualizing NFA

State Diagram is the intuitive way we visualize and work with NFAs
Conventions: Our NFA for L = 0*1:
States () are circles 0
Start state (g,) has an
incoming arrow labeled start 1
Accepting states (F') are start H
double circles

Transitions (&) are arrows
between states, labeled with
input symbols from X

6/19



Recap

NFA vs DFA

NFA DFA

D: (Q72757q07F)
N: (Q72757QO)F)

0: QXY= Q

§:Q x (ZU{e}) 29
N h !
Multiple Transitions. Possibly © such powers

multiple outgoing arrows for same
symbol %

Zero Transitions. Possibly no p
outgoing arrow for a symbol (that Rty

path "dies"” has license to kill) .

e-Transitions. Can change state

without consuming an input symbol \s
Theorem 1.1

A language is recognized by an NFA if and only if it is recognized by a DFA.

7/19



Recap

Example

. Ly ={we {0,1}" | w ends with 1}
L, ={we {0,1}" |w starts with 0}

0 start H L
start H . 0,1
0,1

L=LyVL ={we {0,1}" |w starts with 0 or w ends with 1}.

8/19



Recap

Example - Simplified DFA

L=LyVvL ={we {0,1}" |w starts with 0 or w ends with 1}.

9/19



Regular Expressions

What Next?

- we've learned so far to describe languages using machines: DFAs and NFAs
- they are good at recognizing strings, but are cumbersome to write
- consider find function in a text editor

we provide it a pattern and ask to find all matching strings in the text
we don't give it a DFA
that ‘pattern-language’ is built on Regular Expressions (regex or RE)

10/19



Regular Expressions

Regular Expressions (RE)

Recursive Defn

A regular expression (RE) over an alphabet ¥ is defined as follows:

Primitive Regular Expressions (Base case):
(): is an RE denoting empty language L(()) = {}
e: is a RE the language containing only the empty string L(e) = {¢}
a: is an RE for a symbol a € ¥ denoting L(a) = {a}

Operations (Inductive Step): If R and S are RE, then the following are also REs:
Union (+ or |): (R+S) is an RE, where L(R + S) = L(R) U L(S)
e.g. a + b describes the language {a, b}
Concat (+): (RS) is an RE, where L(RS) = L(R)L(S)
e.g. (a+ b)c describes the language {ac, bc}
Kleene Star (*): (R*) is an RE, where L(R*) = (L(R))*

e.g. a* describes the language {¢, a, aa, aaa, ..., }
11/19



Regular Expressions

Regular Expressions

Examples

RE 0*1 is any number of 0's followed by a 1
Language described by 0*1: {1,01,001, 0001, ..., }

RE (a + b)* is any string composed of a's and b's

Language described by (a + b)*: {e,a,b,ab, ba, aab, aba,baa, ..., }

(0+ 1)*00(0 + 1)* is any binary string with 00 as substring J
RE (a + €)b is an optional a followed by b
Language described by (a + ¢)b: {b,ab} J

12/19



Regular Expressions

Regular Expressions

Operator Precedence

To reduce parentheses, there is a standard order of operations. The operators are
evaluated in the following order, from highest to lowest precedence:

1 Kleene Star * think: power
2 Concat - think: multiplication
3 Union + or | think: addition

RE a + bc* is parsed as: a + (b(c*)).
Language described by a + bc*: {a,b,be, bee, beee, ..., }

RE (a + b)c* is parsed as: (a + b)(c*).
Language described by (a + b)c*: {a,b,ac,be, acc,bec, ..., }

13/19



Regular Languages

Regular Language

Defn: A language L is called a regular language if and only if there exists a regular
expression R that describes it: L = L(R)

But wait, didn't we already define regular languages earlier?
A language L is regular iff ‘if and only if":

- 3 an NFA A such that L = L(A)

- or equivalently, 3 a DFA D such that L = L(D)

14/19



Regular Languages

Regular Language

' state-elimination
Theorem 3.1 (Kleene's Theorem)

All these definitions are equivalent: power-set
-3 a DFA D such that L = L(D)
-3 an NFA A such that L = L(A)

-3 an RE R such that L = L(R) recursive-construction

y 15/19




Proving Kleene's Theorem

Kleene's Theorem: RE = NFA

Step-by-step algorithm to convert an RE to an NFA

Primitive Regular Expressions (Base case):

- a (where a € )
- €
-0

RE NFA

a
start H
a (where a € X0)
start
€
start H
0

16/19



Proving Kleene's Theorem

Kleene's Theorem: RE = NFA

Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

- R, + R, (union) start H

17/19



Proving Kleene's Theorem

Kleene's Theorem: RE = NFA

Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

start 4’
- RR, €
g g
N(R,) N(R,)

(concatenation)

18/19



Proving Kleene's Theorem

Kleene's Theorem: RE = NFA

Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

- R} (Kleene star)

19/19



	Recap
	Regular Expressions
	Regular Languages
	Proving Kleene's Theorem

