CS304: Automata and Formal Languages

Lec 9

Kleene's Theorem

Rachit Nimavat

August 21, 2025

Outline

- Recap
- Regular Languages
- Proving Kleene's Theorem
- Proving Kleene's Theorem
- Post-Kleene Theorem

Deterministic Finite Automata (DFA)

Formal Definition

DFA is a 5-tuple $A = (Q, \Sigma, \delta, q_0, F)$

'sy	mbo	ľ
-,		•

Q

Σ

 $q_0 \in Q$

 $F \subseteq Q$

description

finite set of states underlying finite alphabet transition function between states start state accepting states

Deterministic Finite Automata (DFA)

Visualizing DFA

State Diagram is the intuitive way we visualize and work with DFAs

Conventions:

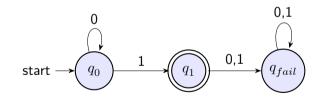
States Q are circles

Start state (q_0) has an incoming arrow labeled start

Accepting states (F) are double circles

Transitions (δ) are arrows between states, labeled with input symbols from Σ

Our DFA for $L=0^*1$:



Non-Deterministic Finite Automata (NFA)

Visualizing NFA

State Diagram is the intuitive way we visualize and work with NFAs

Conventions:

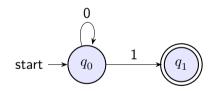
States Q are circles

Start state (q_0) has an incoming arrow labeled start

Accepting states (F) are double circles

Transitions (δ) are arrows between states, labeled with input symbols from Σ

Our NFA for $L=0^*1$:



NFA vs DFA

NFA

$$N=(Q,\Sigma,\delta,q_0,F)$$

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \mapsto 2^Q$$

Multiple Transitions. Possibly multiple outgoing arrows for same symbol

Zero Transitions. Possibly no outgoing arrow for a symbol (that path "dies" has license to kill) ε -**Transitions.** Can change state without consuming an input symbol

DFA

$$D = (Q, \Sigma, \delta, q_0, F)$$

$$\delta:Q\times\Sigma\mapsto Q$$

No such powers!

Theorem 1.1

A language is recognized by an NFA if and only if it is recognized by a DFA.

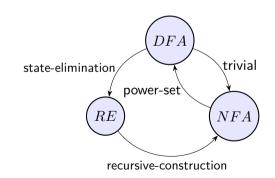
Regular Language

Defn: A language L is called a <u>regular language</u> if and only if there exists a regular expression R that describes it: L = L(R)

Theorem 2.1 (Kleene's Theorem)

All these definitions are equivalent:

- \exists a DFA D such that L = L(D)
- \exists an NFA A such that L = L(A)
- \exists an RE R such that L = L(R)



Kleene's Theorem: RE ⇒ NFA

Step-by-step algorithm to convert an RE to an NFA

Primitive Regular Expressions (Base case):

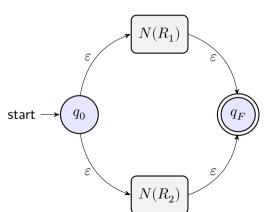
RE	NFA
a (whom a C D)	start $\longrightarrow q_0$ $\xrightarrow{a} q_1$
a (where $a \in \Sigma$)	0
ϵ	$start o q_0$
Ø	$start \longrightarrow q_0$

Kleene's Theorem: RE ⇒ NFA

Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

- $R_1 + R_2$ (union)

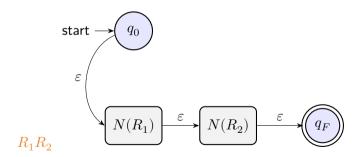


Kleene's Theorem: RE ⇒ NFA

Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

- R_1R_2 (concatenation)



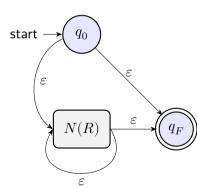
 R^*

Kleene's Theorem: RE ⇒ NFA

Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

- R_1^* (Kleene star)



NFA++

We have already shown that RE \implies NFA.

Observation: An "NFA" where labels of its paths are REs is also an NFA!

Definition 4.1

Consider a finite alphabet Σ and let $\mathcal R$ be the set of all Regular Expressions over Σ . An NFA++ is a 5-tuple $A=(Q,\Sigma,\delta,q_0,q_f)$, where

Q: finite set of states

 q_0 : single starting state

 q_f : single accepting state

 $\delta: (Q \backslash q_f) \times (Q \backslash q_0) \mapsto \mathcal{R}$

recall, $\mathcal R$ includes the "empty" language \emptyset

HW: Formally prove that NFA = NFA++.

i.e. $\forall {\sf NFA}\ M_1$, $\exists {\sf NFA}++M_2$ such that $L(M_1)=L(M_2).$

Notice that the other direction: $\forall \mathsf{NFA} + + \ M_2 \text{, } \exists \mathsf{NFA} \ M_1 \text{ such that } L(M_2) = L(M_1) \text{ is trivial}.$

Kleene's Theorem: NFA $++ \implies RE$

State Elimination

We'll remove states from NFA++ one-by-one until we are left with just the start state q_0 and accept states q_f

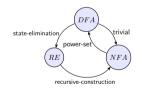
Over to the board!

What Now?

We completed one of the most important results of this course: Kleene's Theorem.

Closure Properties: A set is <u>closed</u> under an operation if applying that operation to its elements results in elements that are also in the set

- Integers are closed under addition int + int = int
- Integers are closed under division false! 3/2 = 1.5
- Real numbers are closed under division false! 0 / 0 is undefined
- Regular languages are closed under union They are regular expressions!
- Regular languages are closed under complementation They are DFAs!



HW: Prove last 2 statements!

Irregular Languages

We've spent all this time defining what regular languages are

But are there languages that are not regular?

Are there languages that a finite automaton cannot <u>solve</u> no matter how many states it has?

Yes! These are called Irregular Languages

How do we even prove that for some given language L, there is NO NFA that accepts it?

Pumping Lemma!

