
CS304: Automata and Formal Languages
Lec 9

Kleene’s Theorem

Rachit Nimavat

August 21, 2025

1 / 15



Outline

1 Recap

2 Regular Languages

3 Proving Kleene’s Theorem

4 Proving Kleene’s Theorem

5 Post-Kleene Theorem

2 / 15



Recap

Deterministic Finite Automata (DFA)
Formal Definition

DFA is a 5-tuple 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 )

‘symbol’

𝑄
Σ
𝛿
𝑞0 ∈ 𝑄
𝐹 ⊆ 𝑄

description

finite set of states
underlying finite alphabet
transition function between states
start state
accepting states

3 / 15



Recap

Deterministic Finite Automata (DFA)
Visualizing DFA

State Diagram is the intuitive way we visualize and work with DFAs
Conventions:

States 𝑄 are circles
Start state (𝑞0) has an
incoming arrow labeled start
Accepting states (𝐹 ) are
double circles
Transitions (𝛿) are arrows
between states, labeled with
input symbols from Σ

Our DFA for 𝐿 = 0∗1:

𝑞0start 𝑞1 𝑞𝑓𝑎𝑖𝑙

0

1 0,1

0,1

4 / 15



Recap

Non-Deterministic Finite Automata (NFA)
Visualizing NFA

State Diagram is the intuitive way we visualize and work with NFAs
Conventions:

States 𝑄 are circles
Start state (𝑞0) has an
incoming arrow labeled start
Accepting states (𝐹 ) are
double circles
Transitions (𝛿) are arrows
between states, labeled with
input symbols from Σ

Our NFA for 𝐿 = 0∗1:

𝑞0start 𝑞1

0

1

5 / 15



Recap

NFA vs DFA

NFA
𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 )

𝛿 ∶ 𝑄 × (Σ ∪ {𝜀}) ↦ 2𝑄

Multiple Transitions. Possibly
multiple outgoing arrows for same
symbol
Zero Transitions. Possibly no
outgoing arrow for a symbol (that
path ”dies” has license to kill)
𝜀-Transitions. Can change state
without consuming an input symbol

DFA
𝐷 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 )

𝛿 ∶ 𝑄 × Σ ↦ 𝑄

No such powers!

Theorem 1.1
A language is recognized by an NFA if and only if it is recognized by a DFA.

6 / 15



Regular Languages

Regular Language

Defn: A language 𝐿 is called a regular language if and only if there exists a regular
expression 𝑅 that describes it: 𝐿 = 𝐿(𝑅)

Theorem 2.1 (Kleene’s Theorem)
All these definitions are equivalent:

- ∃ a DFA 𝐷 such that 𝐿 = 𝐿(𝐷)
- ∃ an NFA 𝐴 such that 𝐿 = 𝐿(𝐴)
- ∃ an RE 𝑅 such that 𝐿 = 𝐿(𝑅)

𝐷𝐹𝐴

𝑁𝐹𝐴𝑅𝐸

trivial
power-set

recursive-construction

state-elimination

7 / 15



Proving Kleene’s Theorem

Kleene’s Theorem: RE ⟹ NFA
Step-by-step algorithm to convert an RE to an NFA

Primitive Regular Expressions (Base case):

RE NFA

𝑎 (where 𝑎 ∈ Σ)
𝑞0start 𝑞1

𝑎

𝜖
𝑞0start

∅
𝑞0start

8 / 15



Proving Kleene’s Theorem

Kleene’s Theorem: RE ⟹ NFA
Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

- 𝑅1 + 𝑅2 (union)

𝑅1 + 𝑅2

𝑞0start

𝑁(𝑅1)

𝑁(𝑅2)

𝑞𝐹

𝜀

𝜀

𝜀

𝜀

9 / 15



Proving Kleene’s Theorem

Kleene’s Theorem: RE ⟹ NFA
Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

- 𝑅1𝑅2
(concatenation)

𝑅1𝑅2

𝑞0start

𝑁(𝑅1) 𝑁(𝑅2) 𝑞𝐹

𝜀

𝜀 𝜀

10 / 15



Proving Kleene’s Theorem

Kleene’s Theorem: RE ⟹ NFA
Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

- 𝑅∗
1 (Kleene star)

𝑅∗

𝑞0start

𝑁(𝑅) 𝑞𝐹

𝜀

𝜀

𝜀

𝜀

11 / 15



Proving Kleene’s Theorem

NFA++
We have already shown that RE ⟹ NFA.
Observation: An “NFA” where labels of its paths are REs is also an NFA!

Definition 4.1
Consider a finite alphabet Σ and let ℛ be the set of all Regular Expressions over Σ. An
NFA++ is a 5-tuple 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝑞𝑓), where

𝑄: finite set of states
𝑞0: single starting state
𝑞𝑓 : single accepting state
𝛿 ∶ (𝑄\𝑞𝑓) × (𝑄\𝑞0) ↦ ℛ recall, ℛ includes the “empty” language ∅

HW: Formally prove that NFA = NFA++.
i.e. ∀NFA 𝑀1, ∃NFA++ 𝑀2 such that 𝐿(𝑀1) = 𝐿(𝑀2).
Notice that the other direction: ∀NFA++ 𝑀2, ∃NFA 𝑀1 such that 𝐿(𝑀2) = 𝐿(𝑀1) is trivial.

12 / 15



Proving Kleene’s Theorem

Kleene’s Theorem: NFA++ ⟹ RE
State Elimination

We’ll remove states from NFA++ one-by-one until we are left with just the start state 𝑞0
and accept states 𝑞𝑓

Over to the board!

13 / 15



Post-Kleene Theorem

What Now?

We completed one of the most important results of this course: Kleene’s Theorem.

𝐷𝐹𝐴

𝑁𝐹𝐴𝑅𝐸

trivial
power-set

recursive-construction

state-elimination

Closure Properties: A set is closed under an operation if applying that
operation to its elements results in elements that are also in the set

- Integers are closed under addition int + int = int
- Integers are closed under division false! 3 / 2 = 1.5
- Real numbers are closed under division false! 0 / 0 is undefined
- Regular languages are closed under union They are regular

expressions!
- Regular languages are closed under complementation They are

DFAs!

HW: Prove last 2 statements!
14 / 15



Post-Kleene Theorem

Irregular Languages

We’ve spent all this time defining what regular languages are
But are there languages that are not regular?
Are there languages that a finite automaton cannot solve no matter how many states
it has?
Yes! These are called Irregular Languages

How do we even prove that for some given
language 𝐿, there is NO NFA that accepts it?

Pumping Lemma!

15 / 15


	Recap
	Regular Languages
	Proving Kleene's Theorem
	Proving Kleene's Theorem
	Post-Kleene Theorem

