Rachit Nimavat

August 21, 2025

1/15



Outline

@ Recap

© Regular Languages
© Proving Kleene's Theorem
@ Proving Kleene's Theorem

© Post-Kleene Theorem

2/15



Recap

Deterministic Finite Automata (DFA)

Formal Definition

DFA is a 5-tuple A = (Q, %, 0, ¢y, F)

‘symbol’ description

Q finite set of states

by underlying finite alphabet

) transition function between states
q € Q start state

FCQ accepting states

3/15



Recap

Deterministic Finite Automata (DFA)
Visualizing DFA

State Diagram is the intuitive way we visualize and work with DFAs
Conventions: Our DFA for L = 0*1:
States () are circles

Start state (g,) has an
incoming arrow labeled start
Accepting states (F') are
double circles

Transitions (&) are arrows
between states, labeled with
input symbols from X

4/15



Recap

Non-Deterministic Finite Automata (NFA)
Visualizing NFA

State Diagram is the intuitive way we visualize and work with NFAs
Conventions: Our NFA for L = 0*1:
States () are circles 0
Start state (g,) has an
incoming arrow labeled start 1
Accepting states (F') are start H
double circles

Transitions (&) are arrows
between states, labeled with
input symbols from X

5/15



Recap

NFA vs DFA

NFA DFA

D: (Q72757q07F)
N: (Q72757QO)F)

0: QXY= Q

§:Q x (ZU{e}) 29
N h !
Multiple Transitions. Possibly © such powers

multiple outgoing arrows for same
symbol %

Zero Transitions. Possibly no p
outgoing arrow for a symbol (that Rty

path "dies"” has license to kill) .

e-Transitions. Can change state

without consuming an input symbol \s
Theorem 1.1

A language is recognized by an NFA if and only if it is recognized by a DFA.

6/15



Regular Languages

Regular Language

Defn: A language L is called a regular language if and only if there exists a regular
expression R that describes it: L = L(R)

Theorem 2.1 (Kleene's Theorem)
All these definitions are equivalent:
-3 a DFA D such that L = L(D)

-3 an NFA A such that L = L(A)
-3J an RE R such that L = L(R)

recursive-construction

7/15



Proving Kleene's Theorem

Kleene's Theorem: RE = NFA

Step-by-step algorithm to convert an RE to an NFA

Primitive Regular Expressions (Base case):

RE NFA

a
start H
a (where a € X)
start
€

start H
0

8/15



Proving Kleene's Theorem

Kleene's Theorem: RE = NFA

Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

- R, + R, (union) start H

9/15



Proving Kleene's Theorem

Kleene's Theorem: RE = NFA

Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

start 4’
- RR, €
g g
N(R,) N(R,)

(concatenation)

10/15



Proving Kleene's Theorem

Kleene's Theorem: RE = NFA

Step-by-step algorithm to convert an RE to an NFA

Combining Machines (Inductive step):

- R} (Kleene star)

11/15



Proving Kleene's Theorem

NFA++

We have already shown that RE = NFA.
Observation: An “NFA” where labels of its paths are REs is also an NFA!
Definition 4.1

Consider a finite alphabet X and let X be the set of all Regular Expressions over ¥. An
NFA++ is a 5-tuple A = (@, %, 0, qq,qs), where

Q: finite set of states

qo: single starting state

qy: single accepting state

6 (Q\gy) x (Q\qp) = R recall, R includes the “empty"” language (ﬂJ

HW: Formally prove that NFA = NFA+4+-.
i.e. VNFA M, INFA++ M, such that L(M,) = L(M,).
Notice that the other direction: VNFA++ M,, INFA M, such that L(M,) = L(M,) is trivial.

12/15



Proving Kleene's Theorem

Kleene's Theorem: NFA++ =— RE

State Elimination

We'll remove states from NFA++ one-by-one until we are left with just the start state g
and accept states ¢;

Over to the board!

13/15



Post-Kleene Theorem

What Now?

We completed one of the most important results of this course: Kleene's Theorem.

A set is closed under an operation if applying that
operation to its elements results in elements that are also in the set

- Integers are closed under addition int + int = int

- Integers are closed under division false! 3 /2 =15

state-elimination,

- Real numbers are closed under division false! 0 / 0 is undefined

- Regular languages are closed under union They are regular
expressions!

recursive-construction

- Regular languages are closed under complementation They are
DFAs!

14/15



Post-Kleene Theorem

Irregular Languages

We've spent all this time defining what regular languages are
But are there languages that are not regular?

Are there languages that a finite automaton cannot solve no matter how many states

it has?

Yes! These are called Irregular Languages

Irregular

Language
How do we even prove that for some given

language L, there is NO NFA that accepts it?

Pumping Lemmal!

Pumping Lemma

15/15



	Recap
	Regular Languages
	Proving Kleene's Theorem
	Proving Kleene's Theorem
	Post-Kleene Theorem

