CS304: Automata and Formal Languages

Lec 10

Pumping Lemma

Rachit Nimavat

August 22, 2025

Outline

- Recap
- Regular Languages
- Pigeonhole Principle
- Pumping Lemma: Examples
- Summary so far

Deterministic Finite Automata (DFA)

Formal Definition

DFA is a 5-tuple $A = (Q, \Sigma, \delta, q_0, F)$

'symbol'	
----------	--

Q

 \sum

 δ

 $q_0 \in Q$

 $F\subseteq Q$

description

finite set of states underlying finite alphabet transition function between states start state accepting states

Deterministic Finite Automata (DFA)

Visualizing DFA

State Diagram is the intuitive way we visualize and work with DFAs

Conventions:

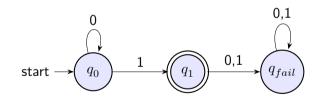
States Q are circles

Start state (q_0) has an incoming arrow labeled start

Accepting states (F) are double circles

Transitions (δ) are arrows between states, labeled with input symbols from Σ

Our DFA for $L=0^*1$:



Non-Deterministic Finite Automata (NFA)

Visualizing NFA

State Diagram is the intuitive way we visualize and work with NFAs

Conventions:

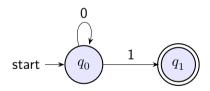
States Q are circles

Start state (q_0) has an incoming arrow labeled start

Accepting states (F) are double circles

Transitions (δ) are arrows between states, labeled with input symbols from Σ

Our NFA for $L=0^*1$:



NFA vs DFA

NFA

$$N = (Q, \Sigma, \delta, q_0, F)$$

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \mapsto 2^Q$$

Multiple Transitions. Possibly multiple outgoing arrows for same symbol

Zero Transitions. Possibly no outgoing arrow for a symbol (that path "dies" has license to kill) ε -**Transitions.** Can change state without consuming an input symbol

DFA

$$D = (Q, \Sigma, \delta, q_0, F)$$

$$\delta:Q\times\Sigma\mapsto Q$$

No such powers!

Theorem 1.1

A language is recognized by an NFA if and only if it is recognized by a DFA.

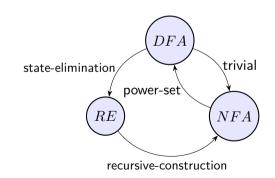
Regular Language

Defn: A language L is called a <u>regular language</u> if and only if there exists a regular expression R that describes it: L = L(R)

Theorem 2.1 (Kleene's Theorem)

All these definitions are equivalent:

- \exists a DFA D such that L = L(D)
- \exists an NFA A such that L = L(A)
- \exists an RE R such that L = L(R)



Pigeonhole Principle

Consider a DFA M with n states.

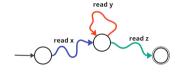
Consider a string w of length |w| > n.

If M accepts w, it must visit at least one state multiple times while processing w

Pigeonhole Principle!

There must be a $\underline{\text{loop}}$ in the computation path We will show that M $\underline{\text{must}}$ accept a family of related strings

Pumping Lemma



Lemma 3.1

For each regular language L, there is a constant p (the pumping length) such that any string $s \in L$ with $|s| \geq p$ can be divided into three parts, s = xyz, such that

- i. |y| > 0 ("looped-string" y is not empty)
- ii. $|xy| \le p$ (the loop starts within the first p characters)
- iii. $\forall i \geq 0$, the string $xy^iz \in L$ (we can pump the loop zero, one, or many times, and the resulting string must still be accepted)

HW: Go over the proof of the pumping lemma in the ALC book.

How to use the Pumping Lemma?

```
Prove that L=\{0^n1^n\mid n\geq 0\} is not regular Assume for contradiction that L is regular From pumping lemma, there is a constant p with "looping property" Let's pick a string s=0^p1^p. Notice that s\in L Consider its decomposition s=xyz given by the pumping lemma |xy|\leq p\implies y=0^{|y|}\ y consists of all zeroes Choose i=2. From pumping lemma, s_2=xy^2z=xy\cdot y\cdot z=0^{p+|y|}1^p\in L Contradiction! since |y|>0)
```

Example 2

Prove that $L = \{w \in \{a, b\}^* \mid w \text{ is a palindrome}\}$ is irregular

Assume for contradiction that L is regular

From pumping lemma, there is a constant p with "looping property"

Let's pick a string $s=a^pba^p$. Notice that $s\in L$

Consider its decomposition s=xyz given by the pumping lemma

$$|xy| \le p \implies y = a^{|y|}$$
 and $|y| > 0$ y is non-empty and consists of all a s

Choose i=0. From pumping lemma, $s_0=xz=a^{p-|y|}ba^p$, which is not a palindrome since |y|>0

Contradiction!

"The Rule"

To prove that a language L is irregular,

- Assume for contradiction that L is regular and ${\cal M}$ is a DFA accepting it
- The pumping lemma gives us a constant p
- Cleverly choose a string $w \in L$ with $|w| \ge p$
- The pumping lemma gives us the decomposition s=xyz with guarantees (note: we cannot choose x,y,z they are given by pumping lemma)
- Cleverly choose $i \geq 0$ so that the pumped string $s_i = xy^iz \notin L$.
- But M must accept s_i Contradiction!

Summary So Far

Regular languages are limited by their finite memory (states)

Pumping Lemma formalizes this by showing that any sufficiently long string in a regular language must contain a "pumpable" loop

Can use this to prove a language is irregular by finding a string that breaks this pumping property.

What's Next?

We've hit the ceiling on the power of finite automata

To recognize more complex languages like 0^n1^n , we need a more powerful model of computation that includes **memory**

Context-Free Grammars and Pushdown Automata