Rachit Nimavat

August 22, 2025

1/13

Outline

@ Recap

© Regular Languages
© Pigeonhole Principle
e Pumping Lemma: Examples

© Summary so far

2/13

Recap

Deterministic Finite Automata (DFA)

Formal Definition

DFA is a 5-tuple A = (Q, %, 0, ¢y, F)

‘symbol’ description

Q finite set of states

by underlying finite alphabet

) transition function between states
q € Q start state

FCQ accepting states

3/13

Recap

Deterministic Finite Automata (DFA)
Visualizing DFA

State Diagram is the intuitive way we visualize and work with DFAs
Conventions: Our DFA for L = 0*1:
States () are circles

Start state (g,) has an
incoming arrow labeled start
Accepting states (F') are
double circles

Transitions (&) are arrows
between states, labeled with
input symbols from X

4/13

Recap

Non-Deterministic Finite Automata (NFA)
Visualizing NFA

State Diagram is the intuitive way we visualize and work with NFAs
Conventions: Our NFA for L = 0*1:
States () are circles 0
Start state (g,) has an
incoming arrow labeled start 1
Accepting states (F') are start H
double circles

Transitions (&) are arrows
between states, labeled with
input symbols from X

5/13

Recap

NFA vs DFA

NFA DFA

D: (Q72757q07F)
N: (Q72757QO)F)

0: QXY= Q

§:Q x (ZU{e}) 29
N h !
Multiple Transitions. Possibly © such powers

multiple outgoing arrows for same
symbol %

Zero Transitions. Possibly no p
outgoing arrow for a symbol (that Rty

path "dies"” has license to kill) .

e-Transitions. Can change state

without consuming an input symbol \s
Theorem 1.1

A language is recognized by an NFA if and only if it is recognized by a DFA.

6/13

Regular Languages

Regular Language

Defn: A language L is called a regular language if and only if there exists a regular
expression R that describes it: L = L(R)

Theorem 2.1 (Kleene's Theorem)
All these definitions are equivalent:
-3 a DFA D such that L = L(D)

-3 an NFA A such that L = L(A)
-3J an RE R such that L = L(R)

recursive-construction

7/13

Pigeonhole Principle

Pigeonhole Principle

Consider a DFA M with n states.
Consider a string w of length |w| > n.

If M accepts w, it must visit at least one state
multiple times while processing w

Pigeonhole Principle!
There must be a loop in the computation path

We will show that M must accept a family of
related strings

8/13

Pigeonhole Principle

Pumping Lemma

Lemma 3.1
For each regular language L, there is a constant p (the

pumping length) such that any string s € L with |s| > p
can be divided into three parts, s = xyz, such that

i. |y| > 0 ("looped-string” y is not empty)
ii. |zy| < p (the loop starts within the first p characters)
iii. ¥i >0, the string xy'z € L (we can pump the loop
zero, one, or many times, and the resulting string
must still be accepted)

ready

HW: Go over the proof of the pumping lemma in the ALC book.

9/13

Pumping Lemma: Examples

How to use the Pumping Lemma?

Prove that L = {0"1" | n > 0} is not regular
Assume for contradiction that L is regular
From pumping lemma, there is a constant p with "looping property”
Let's pick a string s = OP1P. Notice that s € L

Consider its decomposition s = zyz given by the pumping lemma

lzy| < p = y = 0¥ y consists of all zeroes

Choose i = 2. From pumping lemma, s, = zy?z =2y -y -2 = oPtlvilr e I
Contradiction! since |y| > 0)

10/13

Pumping Lemma: Examples

Example 2

Prove that L = {w € {q, b} |wis a palindrome} is irregular
Assume for contradiction that L is regular
From pumping lemma, there is a constant p with "looping property”
Let's pick a string s = aPbaP. Notice that s € L

Consider its decomposition s = zyz given by the pumping lemma
lry| <p = y=dal and |y| > 0 y is non-empty and consists of all as

Choose @ = 0. From pumping lemma, s, = zz = aP~1¥baP, which is not a
palindrome since |y| > 0

Contradiction!

11/13

Pumping Lemma: Examples

"The Rule”

To prove that a language L is irregular,

Assume for contradiction that L is regular and M is a
DFA accepting it

The pumping lemma gives us a constant p

Cleverly choose a string w € L with |w| > p

The pumping lemma gives us the decomposition s = zyz
with guarantees (note: we cannot choose z,y, z they are
given by pumping lemma)

Cleverly choose i > 0 so that the pumped string

s, =xy'z ¢ L.
But M must accept s;

Contradiction!

12/13

Summary so far

Summary So Far

Regular languages are limited by their finite memory (states)

Pumping Lemma formalizes this by showing that any sufficiently long string in a
regular language must contain a "pumpable” loop

Can use this to prove a language is irregular by finding a string that breaks this
pumping property.

What’s Next?
We've hit the ceiling on the power of finite automata

To recognize more complex languages like 0"1", we need a more powerful model of
computation that includes memory

and

13/13

	Recap
	Regular Languages
	Pigeonhole Principle
	Pumping Lemma: Examples
	Summary so far

