CS304: Automata and Formal Languages

Lec 11

Pumping Lemma and Closure and Decision Properties of Regular Languages

Rachit Nimavat

August 26, 2025

Outline

- Recap
- 2 Pumping Lemma
- Closure Properties
- Decision Properties

NFA vs DFA

NFA

$$N = (Q, \Sigma, \delta, q_0, F)$$

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \mapsto 2^Q$$

Multiple Transitions. Possibly multiple outgoing arrows for same symbol

Zero Transitions. Possibly no outgoing arrow for a symbol (that path "dies" has license to kill) ε -**Transitions.** Can change state without consuming an input symbol

DFA

$$D=(Q,\Sigma,\delta,q_0,F)$$

$$\delta:Q\times\Sigma\mapsto Q$$

No such powers!

Theorem 1.1

A language is recognized by an NFA if and only if it is recognized by a DFA.

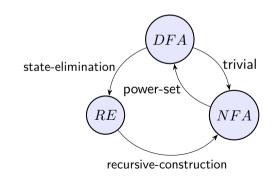
Regular Language

Defn: A language L is called a <u>regular language</u> if and only if there exists a regular expression R that describes it: L = L(R)

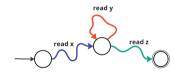
Theorem 1.2 (Kleene's Theorem)

All these definitions are equivalent:

- \exists a DFA D such that L = L(D)
- \exists an NFA A such that L = L(A)
- \exists an RE R such that L = L(R)



Pumping Lemma



Lemma 2.1

For each regular language L, there is a constant p (the pumping length) such that any string $s \in L$ with $|s| \ge p$ can be divided into three parts, s = xyz, such that

- i. |y| > 0 ("looped-string" y is not empty)
- ii. $|xy| \le p$ (the loop starts within the first p characters)
- iii. $\forall i \geq 0$, the string $xy^iz \in L$ (we can pump the loop zero, one, or many times, and the resulting string must still be accepted)

How to use Pumping Lemma?

Goal: Prove that a language L is <u>irregular</u>.

Assume that L is regular.

Pumping Lemma: Player-1 Us: Player-2

1. Provides 'pumping length' p

2. Cleverly choose $s \in L$ such that $|s| \ge p$

6/12

3. Provides a partition s=xyz such that |y|>0 and |xy|< p 4. WIN by choosing $i\geq 0$ such that $xy^iz\notin L$

If $xy^iz\notin L$, then we have a contradiction. Thus, our assumption that L is regular must be false. Therefore, L is irregular.

Note: For this to work, we must have a winning strategy for each p and for each partition s = xyz (that satisfies |y| > 0 and |xy| < p).

Example

Prove that
$$L = \{0^n 1^n \mid n \ge 0\}$$
 is not regular

Assume for contradiction that L is regular

From pumping lemma, there is a constant p with "looping property"

Let's pick a string $s = 0^p 1^p$. Notice that $s \in L$

Consider its decomposition s=xyz given by the pumping lemma

$$|xy| \le p \implies y = 0^{|y|} y$$
 consists of all zeroes

Choose i=2. From pumping lemma, $s_2=xy^2z=xy\cdot y\cdot z=0^{p+|y|}1^p\in L$

Contradiction! since |y| > 0)

Example II

Prove that $L = \{a^n \mid n \text{ is a perfect square}\}$ is not regular

Assume for contradiction that L is regular

From pumping lemma, there is a constant p with $\underline{\text{"looping property"}}$

Let's pick a string $s=a^{p^2}$. Notice that $s\in L$

Consider its decomposition s=xyz given by the pumping lemma

Pumping lemma guarantees $1 < y \le p$

Choose i=2. From pumping lemma, $s_2=xy^2z$ has length

$$|s_2| = |s| + |y| \in [p^2 + 1, p^2 + p]$$

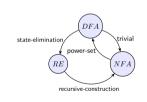
Contradiction! since $p^2 < p^2 + 1 \le p^2 + p < (p+1)^2$ and hence the length of s_2 is not a perfect square.

Closure Properties

Closure Properties: A set is <u>closed</u> under an operation if applying that operation to its elements results in elements that are also in the set

- Regular languages are closed under union Regular expressions!
- Regular languages are closed under complementation DFAs!
- Regular languages are closed under intersection De Morgan's Laws!
- Difference of regular languages is regular $A \setminus B = A \cap \overline{B}$
- Reversal of regular languages is regular Reverse DFA and add a new start state with ε -transitions to old accept states
- Kleene-star of regular languages is regular Regular expressions!
- Concatenation of regular languages is regular Regular expressions!
- Substitution of characters by strings (Homomorphism) in regular languages is regular Regular expressions!
- Inverse Homomorphism is also regular, but don't worry about that. See
 Chap 4.2 of ALC for details.

 9/12



Example III

Prove that $K = \left\{w \in \left\{0,1\right\}^* \mid w \text{ has an equal number of 0's and 1's}\right\}$ is not regular.

Assume K is regular

Consider a known regular language K' = 0*1*

Then, by closure properties, $K \cap K' = \{0^n 1^n \mid n \geq 0\}$ is also regular

Contradiction!

Example IV

Prove that $L = \{ab^nc^n + a^k(b+c)^* \mid k \neq 1 \text{ and } n \geq 0\}$ over $\Sigma = \{a,b,c\}$ is irregular

Assume for contradiction that L is regular

From pumping lemma, there is a constant p with "looping property"

Let's pick a string $s \in L$ with $|s| \ge p$

- if s starts with a, then a valid decomposition is $x = \varepsilon$, y = a, z = s[1:]. Notice that for all i > 0, $s_i = xy^iz \in L$.
- if s does not start with a, then $s \in (b+c)^*$ and can be trivially pumped

No Contradiction!

Is L a regular language then? **NO!**

- Assume L is regular
- Know: $\left\{a^k(b+c)^* \,|\, k \neq 1\right\}$ is regular
- Closure Properties $\implies b^n c^n$ is regular. **Contradiction!**

Decision Properties

Three major questions:

1. Is the given regular language L empty?

Assume we are given a DFA for L. If it has no accept states, then it is empty. Is this a <u>sufficient</u> condition? Is this a <u>necessary</u> condition? Can an empty language's DFA have accept states?

 ${\cal L}$ is empty iff the DFA has no **reachable** accept states.

- 2. Is the given regular language L finite? Assume we are given a NFA for L. L is infinite iff NFA has a 'loop' on a path to accept state. You'll learn an algorithm for this task in the Data Structures and Algorithms course.
- 3. Is the given regular language L equal to another regular language K? Check whether $(L \setminus K) \cup (K \setminus L)$ is empty or not.

HW: Can you deterrmine if a given NFA accepts some string? Lookup graph reachability

HW: Can you determine if a given NFA accepts all strings?

HW: Prove that the condition for equality is sufficient and necessary.