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Recap

Regular Language

Defn: A language L is called a regular language if and only if there exists a regular
expression R that describes it: L = L(R)

Theorem 1.1 (Kleene's Theorem)

All these definitions are equivalent:
-3 a DFA D such that L = L(D)

-3 an NFA A such that L = L(A)
-3J an RE R such that L = L(R)

recursive-construction
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Pumping Lemma

Recap

Lemma 1.2
For each regular language L, there is a constant p (the
pumping length) such that any string s € L with |s| > p

can be divided into three parts, s = xyz, such that
i. |yl >0 (“looped-string” y is not empty)

ii. |xzy| < p (the loop starts within the first p characters)
ii. ¥i >0, the string xy'z € L (we can pump the loop
zero, one, or many times, and the resulting string

must still be accepted)
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Recap

How to use Pumping Lemma?

Goal: Prove that a language L is irregular.
Assume that L is regular.
Pumping Lemma: Player-1 Us: Player-2

1. Provides ‘pumping length’ p
2. Cleverly choose s € L such that |s| > p

3. Provides a partition s = zyz
such that |y| > 0 and |zy| <p 4. WIN by choosing i > 0 such that zy’z ¢ L

If zy'z ¢ L, then we have a contradiction. Thus, our assumption that L is regular must

be false. Therefore, L is irregular.
Note: For this to work, we must have a winning strategy for each p and for each

partition s = xyz (that satisfies |y| > 0 and |zy| < p).
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Recap

Example

Prove that L = {0™1"2" | m,n > 0} is not regular
Assume for contradiction that L is regular
From pumping lemma, there is a constant p with "looping property”
Let's pick a string s = 0P1P2P. Notice that s € L

What if pumping lemma plays s = (£)(0P)(1P2P)? We do not have winning strategy
herel!

Let's pick a string s = 1P2P. Notice that s € L

Consider its decomposition s = xyz given by the pumping lemma

lzy] <p = y = 1 y consists of all ones

Choose i = 0. From pumping lemma, s, = xy°z = 2z = 17-1¥/2P_ But then s, ¢ L.
Contradiction! since |y| > 0)
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Closure Properties

state-elimination,

recursive-construction

Recap

A set is closed under an operation if applying that

operation to its elements results in elements that are also in the set

Regular languages are closed under union Regular expressions!
Regular languages are closed under complementation DFAs!
Regular languages are closed under intersection De Morgan's Laws!
Difference of regular languages is regular A\ B = AN B

Reversal of regular languages is regular Reverse DFA and add a new
start state with e-transitions to old accept states

Kleene-star of regular languages is regular Regular expressions!
Concatenation of regular languages is regular Regular expressions!

Substitution of characters by strings (Homomorphism) in regular
languages is regular Regular expressions!

Inverse Homomorphism is also regular, but don't worry about that. See
Chap 4.2 of ALC for details. 7/14



Decision Properties

Decision Properties

Three major questions:

1. Is the given regular language L empty?
L is empty iff the DFA has no reachable accept states.

2. Is the given regular language L finite?
L is infinite iff NFA has a 'loop’ on a path to accept state. You'll learn an algorithm
for this task in the Data Structures and Algorithms course.

3. Is the given regular language L equal to another regular language K7
Check whether (L\K) U (K\L) is empty or not. Is there a more direct way? What if
each regular language has one single, standard, best DFA? Then we can just convert
both L and K to this form and check if they are the same. For this, need to define
equivalence of DFA states.
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Equivalence of DFA States

Indistinguishable States

Consider a DFA M = (Q,%,0,q,, F).

Definition 3.1

Two states, p and ¢, are indistinguishable (or equivalent) if for every possible string w,
you end up in an accepting state starting from p if and only if you end up in an accepting
state starting from g:

S(p,w) € F < §(q,w) € F

No Global View
Think from the perspective of the computer processing a string w on M
It doesn't need to load the entire M in memory
From any given state, the only thing it knows is which transitions are available
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Equivalence of DFA States

The Algorithm: How to Find Indistinguishable States?

Base Case: Mark any pair (p,q) as distinguishable if one is an accepting state and the
other is not.

Inductive Step: For each pair of states (p, q), if there exists a symbol a € ¥ such that
d(p,a) and (g, a) are known to be distinguishable, then mark (p, q) as distinguishable.

Until no new pairs are marked in a full pass

Conclusion: Any pair of states that has not been marked as distinguishable is
indistinguishable
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Equivalence of DFA States

Example

B |x

C |x |x

D |x |x |x

I X |x |x

F |x [x |x X

G |x |x |x |x |x |x

H |x X |x |[x |x |x
0 A B CDETFG

See, Chapter 4.4.1 in ALC.
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Equivalence of Regular Languages
How to check if two Regular Languages are Equal?

Convert both languages to their respective DFAs
Check if the two DFAs are equivalent
How do we check if two DFAs are equivalent?

Check if states ¢y, and g are indistinguishable in M = M, U M,

Does it matter that M has 2 start states?
NO! For indistinguishability, the start state is irrelevant

Observation 1 (Equality of Regular Languages)
L(M,) = L(M,) iff gy, and quy are indistinguishable in M J
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DFA Minimization Algorithm

DFA Minimization Algorithm

Consider a DFA M = (Q,%,0,q,, F)
Goal: Minimize the number of states in M while preserving its language
Preparation:
Remove states that are unreachable from the start state
Partition the states into blocks of “equivalence states”
Algorithm for constructing minimized DFA N:
States of IV are the blocks of the above partition
Start state of NV is the block containing the start state of M
Accept states of IV are the blocks containing accept states of M
Transition function ~ is defined as follows:
For each block S C @ and each input symbol a € %, find the block 1" such
that for each state ¢ € S, d(q,a) € T Why such a block 7" exists?
Define v(S,a) :=T
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Proof of Correctness of DFA Minimization
Proof of Correctness of DFA Minimization

From our construction, NN is indeed equivalent to M.

But what if there is some another DFA K that is equivalent to M and has fewer
states than N7

How to prove this does not happen? Proof by contradiction!

Assume for contradiction that there exists a DFA K that is equivalent to M and has
fewer states than V.
Since K is equivalent to N (and M), it must also accept the same language
Thus, start states of N and K are indistinguishable
p=q = foreacha € X, é(p,a) =6(q,a)
All states of N and K are reachable from the start state of V and K respectively
Each state of NV is indistinguishable from at least 1 state of K
Jpy,ps € N that are indistinguishable for a state p; € K Pigeonhole Principle!
But then p; = p3 = py = p; = py, a contradiction!
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