
CS304: Automata and Formal Languages
Lec 12

Equivalence of States and DFAs and DFA Minimization

Rachit Nimavat

Aug 29, 2025

1 / 14

Outline

1 Recap

2 Decision Properties

3 Equivalence of DFA States

4 Equivalence of Regular Languages

5 DFA Minimization Algorithm

6 Proof of Correctness of DFA Minimization

2 / 14

Recap

Regular Language

Defn: A language 𝐿 is called a regular language if and only if there exists a regular
expression 𝑅 that describes it: 𝐿 = 𝐿(𝑅)

Theorem 1.1 (Kleene’s Theorem)
All these definitions are equivalent:

- ∃ a DFA 𝐷 such that 𝐿 = 𝐿(𝐷)
- ∃ an NFA 𝐴 such that 𝐿 = 𝐿(𝐴)
- ∃ an RE 𝑅 such that 𝐿 = 𝐿(𝑅)

𝐷𝐹𝐴

𝑁𝐹𝐴𝑅𝐸

trivial
power-set

recursive-construction

state-elimination

3 / 14

Recap

Pumping Lemma

Lemma 1.2
For each regular language 𝐿, there is a constant 𝑝 (the
pumping length) such that any string 𝑠 ∈ 𝐿 with |𝑠| ≥ 𝑝
can be divided into three parts, 𝑠 = 𝑥𝑦𝑧, such that

i. |𝑦| > 0 (“looped-string” 𝑦 is not empty)
ii. |𝑥𝑦| ≤ 𝑝 (the loop starts within the first 𝑝 characters)
iii. ∀𝑖 ≥ 0, the string 𝑥𝑦𝑖𝑧 ∈ 𝐿 (we can pump the loop

zero, one, or many times, and the resulting string
must still be accepted)

4 / 14

Recap

How to use Pumping Lemma?
Goal: Prove that a language 𝐿 is irregular.
Assume that 𝐿 is regular.

Pumping Lemma: Player-1

1. Provides ‘pumping length’ 𝑝

3. Provides a partition 𝑠 = 𝑥𝑦𝑧
such that |𝑦| > 0 and |𝑥𝑦| < 𝑝

Us: Player-2

2. Cleverly choose 𝑠 ∈ 𝐿 such that |𝑠| ≥ 𝑝

4. WIN by choosing 𝑖 ≥ 0 such that 𝑥𝑦𝑖𝑧 ∉ 𝐿

If 𝑥𝑦𝑖𝑧 ∉ 𝐿, then we have a contradiction. Thus, our assumption that 𝐿 is regular must
be false. Therefore, 𝐿 is irregular.
Note: For this to work, we must have a winning strategy for each 𝑝 and for each

partition 𝑠 = 𝑥𝑦𝑧 (that satisfies |𝑦| > 0 and |𝑥𝑦| < 𝑝). 5 / 14

Recap

Example

Prove that 𝐿 = {0𝑚1𝑛2𝑛 | 𝑚, 𝑛 ≥ 0} is not regular
Assume for contradiction that 𝐿 is regular
From pumping lemma, there is a constant 𝑝 with ”looping property”
Let’s pick a string 𝑠 = 0𝑝1𝑝2𝑝. Notice that 𝑠 ∈ 𝐿
What if pumping lemma plays 𝑠 = (𝜀)(0𝑝)(1𝑝2𝑝)? We do not have winning strategy
here!
Let’s pick a string 𝑠 = 1𝑝2𝑝. Notice that 𝑠 ∈ 𝐿
Consider its decomposition 𝑠 = 𝑥𝑦𝑧 given by the pumping lemma
|𝑥𝑦| ≤ 𝑝 ⟹ 𝑦 = 1|𝑦| 𝑦 consists of all ones
Choose 𝑖 = 0. From pumping lemma, 𝑠0 = 𝑥𝑦0𝑧 = 𝑥𝑧 = 1𝑝−|𝑦|2𝑝. But then 𝑠0 ∉ 𝐿.
Contradiction! since |𝑦| > 0)

6 / 14

Recap

Closure Properties

𝐷𝐹𝐴

𝑁𝐹𝐴𝑅𝐸

trivial
power-set

recursive-construction

state-elimination

Closure Properties: A set is closed under an operation if applying that
operation to its elements results in elements that are also in the set

- Regular languages are closed under union Regular expressions!
- Regular languages are closed under complementation DFAs!
- Regular languages are closed under intersection De Morgan’s Laws!
- Difference of regular languages is regular 𝐴 ∖ 𝐵 = 𝐴 ∩ 𝐵
- Reversal of regular languages is regular Reverse DFA and add a new

start state with 𝜀-transitions to old accept states
- Kleene-star of regular languages is regular Regular expressions!
- Concatenation of regular languages is regular Regular expressions!
- Substitution of characters by strings (Homomorphism) in regular

languages is regular Regular expressions!
- Inverse Homomorphism is also regular, but don’t worry about that. See

Chap 4.2 of ALC for details. 7 / 14

Decision Properties

Decision Properties

Three major questions:
1. Is the given regular language 𝐿 empty?

𝐿 is empty iff the DFA has no reachable accept states.
2. Is the given regular language 𝐿 finite?

𝐿 is infinite iff NFA has a ’loop’ on a path to accept state. You’ll learn an algorithm
for this task in the Data Structures and Algorithms course.

3. Is the given regular language 𝐿 equal to another regular language 𝐾?
Check whether (𝐿\𝐾) ∪ (𝐾\𝐿) is empty or not. Is there a more direct way? What if
each regular language has one single, standard, best DFA? Then we can just convert
both 𝐿 and 𝐾 to this form and check if they are the same. For this, need to define
equivalence of DFA states.

8 / 14

Equivalence of DFA States

Indistinguishable States

Consider a DFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹).
Definition 3.1
Two states, 𝑝 and 𝑞, are indistinguishable (or equivalent) if for every possible string 𝑤,
you end up in an accepting state starting from 𝑝 if and only if you end up in an accepting
state starting from 𝑞:

̂𝛿(𝑝, 𝑤) ∈ 𝐹 ⟺ ̂𝛿(𝑞, 𝑤) ∈ 𝐹

No Global View
Think from the perspective of the computer processing a string 𝑤 on 𝑀
It doesn’t need to load the entire 𝑀 in memory
From any given state, the only thing it knows is which transitions are available

9 / 14

Equivalence of DFA States

The Algorithm: How to Find Indistinguishable States?
Base Case: Mark any pair (𝑝, 𝑞) as distinguishable if one is an accepting state and the
other is not.

Inductive Step: For each pair of states (𝑝, 𝑞), if there exists a symbol 𝑎 ∈ Σ such that
𝛿(𝑝, 𝑎) and 𝛿(𝑞, 𝑎) are known to be distinguishable, then mark (𝑝, 𝑞) as distinguishable.

Repeat: Until no new pairs are marked in a full pass

Conclusion: Any pair of states that has not been marked as distinguishable is
indistinguishable

HW: Prove that this algorithm terminates and its correctness. See, Chapter 4.4
in ALC.

10 / 14

Equivalence of DFA States

Example

See, Chapter 4.4.1 in ALC.
11 / 14

Equivalence of Regular Languages

How to check if two Regular Languages are Equal?
Convert both languages to their respective DFAs
Check if the two DFAs are equivalent
How do we check if two DFAs are equivalent?

Consider two DFAs 𝑀1 = (𝑄1, Σ, 𝛿1, 𝑞01, 𝐹1) and 𝑀2 = (𝑄2, Σ, 𝛿2, 𝑞02, 𝐹2)
Check if states 𝑞01 and 𝑞02 are indistinguishable in 𝑀 = 𝑀1 ∪ 𝑀2

Does it matter that 𝑀 has 2 start states?
NO! For indistinguishability, the start state is irrelevant

Observation 1 (Equality of Regular Languages)
𝐿(𝑀1) = 𝐿(𝑀2) iff 𝑞01 and 𝑞02 are indistinguishable in 𝑀

12 / 14

DFA Minimization Algorithm

DFA Minimization Algorithm

Consider a DFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)
Goal: Minimize the number of states in 𝑀 while preserving its language

Preparation:
Remove states that are unreachable from the start state
Partition the states into blocks of “equivalence states”

Algorithm for constructing minimized DFA 𝑁 :
States of 𝑁 are the blocks of the above partition
Start state of 𝑁 is the block containing the start state of 𝑀
Accept states of 𝑁 are the blocks containing accept states of 𝑀
Transition function 𝛾 is defined as follows:

For each block 𝑆 ⊆ 𝑄 and each input symbol 𝑎 ∈ Σ, find the block 𝑇 such
that for each state 𝑞 ∈ 𝑆, 𝛿(𝑞, 𝑎) ∈ 𝑇 Why such a block 𝑇 exists?
Define 𝛾(𝑆, 𝑎) ∶= 𝑇

13 / 14

Proof of Correctness of DFA Minimization

Proof of Correctness of DFA Minimization
From our construction, 𝑁 is indeed equivalent to 𝑀 .
But what if there is some another DFA 𝐾 that is equivalent to 𝑀 and has fewer
states than 𝑁?
How to prove this does not happen? Proof by contradiction!

Assume for contradiction that there exists a DFA 𝐾 that is equivalent to 𝑀 and has
fewer states than 𝑁 .

Since 𝐾 is equivalent to 𝑁 (and 𝑀), it must also accept the same language
Thus, start states of 𝑁 and 𝐾 are indistinguishable
𝑝 ≡ 𝑞 ⟹ for each 𝑎 ∈ Σ, 𝛿(𝑝, 𝑎) ≡ 𝛿(𝑞, 𝑎)
All states of 𝑁 and 𝐾 are reachable from the start state of 𝑁 and 𝐾 respectively
Each state of 𝑁 is indistinguishable from at least 1 state of 𝐾
∃𝑝1, 𝑝2 ∈ 𝑁 that are indistinguishable for a state 𝑝3 ∈ 𝐾 Pigeonhole Principle!
But then 𝑝1 ≡ 𝑝3 ≡ 𝑝2 ⟹ 𝑝1 ≡ 𝑝2, a contradiction!

14 / 14

	Recap
	Decision Properties
	Equivalence of DFA States
	Equivalence of Regular Languages
	DFA Minimization Algorithm
	Proof of Correctness of DFA Minimization

