
CS304: Automata and Formal Languages
Lec 13

Context-Free Grammars

Rachit Nimavat

September 1, 2025

1 / 8

Outline

1 Lookahead

2 The Limits of Regular Languages

3 CFGs

2 / 8

Lookahead

The World of Regular Languages
Three Faces of Same Power

The Limit: What Can’t Finite Automata Do?
Consider the language 𝐿 = {𝑎𝑛𝑏𝑛 ∣ 𝑛 ≥ 0} = {𝜖, 𝑎𝑏, 𝑎𝑎𝑏𝑏, 𝑎𝑎𝑎𝑏𝑏𝑏, … }.

To accept 𝐿, a DFA/NFA must count the number of 𝑎’s
DFA/NFA has only a finite number of states and cannot remember an arbitrarily
large count 𝑛.

Next Step?
We need machine with more power:

- Context-Free Grammars: A way to describe languages with recursive structure
- Pushdown Automata: NFA + Stack

3 / 8

The Limits of Regular Languages

The Limits of Regular Languages
Finite Memory

DFAs lack the memory to handle unbounded counting or nested structures
Can’t recognize languages like {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 0}

A New Tool: Context-Free Grammar (CFG)
To describe these more complex languages, we need a more powerful tool. Instead of a
machine that just recognizes strings, we use a system of rules that generates these strings.

4 / 8

CFGs

Example
Consider 𝐿 = {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 0} over Σ = {𝑎, 𝑏}. Let’s build a grammar!

𝑆 → 𝜀
𝑆 → a𝑆b

Shorthand: 𝑆 → 𝜀 | a𝑆b

Derivation
is a sequence of steps applying the production rules. Generating string aabb:

𝑆 → a𝑆b
→ aa𝑆bb
→ aabb

5 / 8

CFGs

Example - II
CFGs are excellent for defining the syntax of programming languages. Let’s build a
grammar for expressions over {𝑎, 𝑏, 𝑐}.

𝐸 → 𝐸 + 𝐸 | 𝐸 ∗ 𝐸 | 𝑇
𝑇 → a | b | c

Derivations.

Generating 𝑎 ∗ 𝑏

𝐸 → 𝐸 ∗ 𝐸
→ 𝑇 ∗ 𝐸
→ 𝑇 ∗ 𝑇
→ 𝑎 ∗ 𝑇
→ 𝑎 ∗ 𝑏

Generating 𝑎 + 𝑎

𝐸 → 𝐸 + 𝐸
→ 𝑇 + 𝐸
→ 𝑇 + 𝑇
→ 𝑎 + 𝑇
→ 𝑎 + 𝑎

Generating 𝑎 + 𝑏 ∗ 𝑐

𝐸 → 𝐸 + 𝐸
→ 𝐸 + 𝐸 ∗ 𝐸
→ 𝑇 + 𝐸 ∗ 𝐸
→ 𝑇 + 𝑇 ∗ 𝐸
→ 𝑇 + 𝑇 ∗ 𝑇
→ 𝑎 + 𝑇 ∗ 𝑇
→ 𝑎 + 𝑏 ∗ 𝑇
→ 𝑎 + 𝑏 ∗ 𝑐

6 / 8

CFGs

Defn
A CFG is a set of recursive rules used to generate patterns of strings. Think of it as a
blueprint for a language.
Definition 3.1
A Context-Free Grammar is a 4-tuple 𝐺 = (𝑉 , 𝑇 , 𝑃 , 𝑆), where:

V: Finite set of variables. think: syntactic categories or placeholders. (e.g., 𝑆, 𝐸, 𝑇
in previous examples)
T: Finite set of terminals or tokens. actual symbols or words of the language. (e.g.,
a,b,c,+,* in previous examples)
P: Finite set of production rules. Rules have the form 𝐴 → 𝛼, where 𝐴 ∈ 𝑉 and
𝛼 ∈ (𝑉 ∪ 𝑇)∗, i.e., 𝛼 is a string consisting of variables and terminals. specifies how to
replace variables with strings of variables and terminals. (e.g., 𝑆 → a𝑆b and 𝐸 → 𝑇) in
previous examples
S: The start symbol (𝑆 ∈ 𝑉).

7 / 8

CFGs

Example - III

Can you write a CFG for every regular language? Example: Σ = 0, 1 and 𝐿 = Σ∗.

𝑆 → 0𝑆 | 1𝑆 | 𝜀

Derivations.

Generating 𝜀

𝑆 → 𝜀

Generating 010

𝑆 → 0𝑆
→ 01𝑆
→ 010𝑆
→ 010

Generating 0

𝑆 → 0𝑆
→ 0

HW: Think about an algorithm to convert a DFA to a CFG.

8 / 8

	Lookahead
	The Limits of Regular Languages
	CFGs

