Rachit Nimavat

September 1, 2025

Outline

@ Lookahead

© The Limits of Regular Languages

© CFGs

2/8

Lookahead

The World of Regular Languages

Three Faces of Same Power

The Limit: What Can't Finite Automata Do?
Consider the language L = {a"b" | n > 0} = {¢, ab, aabb, aaabbb, ... }.
To accept L, a DFA/NFA must count the number of a's

DFA/NFA has only a finite number of states and cannot remember an arbitrarily
large count n.

Next Step?

We need machine with more power:
- Context-Free Grammars: A way to describe languages with recursive structure
- Pushdown Automata: NFA + Stack

3/8

The Limits of Regular Languages

The Limits of Regular Languages

Finite Memory

DFAs lack the memory to handle unbounded counting or nested structures

Can't recognize languages like {a™b™ | n > 0}

A New Tool: Context-Free Grammar (CFG)

To describe these more complex languages, we need a more powerful tool. Instead of a
machine that just recognizes strings, we use a system of rules that generates these strings.

4/8

CFGs
Example

Consider L = {a™b™ | n > 0} over ¥ = {a,b}. Let's build a grammar!

Tvww

S —¢
S — asShb

Shorthand: S — ¢|aShb

Derivation

is a sequence of steps applying the production rules. Generating string aabb:

S — ash
— aasShbb
— aabb

5/8

Example - Il

CFGs

CFGs are excellent for defining the syntax of programming languages. Let’s build a

grammar for expressions over {a, b, c}.

E—>E+E|E«E|T

T—albjc

Derivations.
Generating a * b

E—-FExFE
—Tx*xFE
— T T
—axT
—axb

Generating a + a

EFE—-FE+FE
—-T+FE
—-T+T
—a+T
—a—+a

Generating a + b* ¢

EFE—-FEF+FE

—FE+ExFE
—-T+ExFE
—-T+Tx*xFE
=T +TxT
—a+Tx*T
—a+bxT

—a+bxc

6/8

CFGs

Defn

A CFG is a set of recursive rules used to generate patterns of strings. Think of it as a
blueprint for a language.

Definition 3.1
A Context-Free Grammar is a 4-tuple G = (V,T, P, S), where:

V: Finite set of variables. think: syntactic categories or placeholders. (e.g., S, E, T
in previous examples)

T: Finite set of terminals or tokens. actual symbols or words of the language. (e.g.,

a, b, c,+,* in previous examples)

P: Finite set of production rules. Rules have the form A — «, where A € V' and

a € (VUT)*, ie., «is a string consisting of variables and terminals. specifies how to
replace variables with strings of variables and terminals. (e.g., S — aSb and E — T') in

previous examples

S: The start symbol (S € V).

7/8

CFGs

Example - |lI

Can you write a CFG for every regular language? Example: ¥ = 0,1 and L = ¥*.

S—0S|1S5 e
Derivations.

Generating 010

Generating ¢ Generating 0

S —0S
S—e — 01S S —0S
— 0108 =0

— 010

8/8

	Lookahead
	The Limits of Regular Languages
	CFGs

