CS304: Automata and Formal Languages

Lec 13

Context-Free Grammars

Rachit Nimavat

September 1, 2025

Outline

- Lookahead
- 2 The Limits of Regular Languages
- CFGs

The World of Regular Languages

Three Faces of Same Power

The Limit: What Can't Finite Automata Do?

Consider the language $L = \{a^nb^n \mid n \ge 0\} = \{\epsilon, ab, aabb, aaabb, \dots\}.$

To accept L, a DFA/NFA must **count** the number of a's

DFA/NFA has only a finite number of states and cannot remember an arbitrarily large count n.

Next Step?

We need machine with more power:

- Context-Free Grammars: A way to describe languages with recursive structure
- Pushdown Automata: NFA + Stack

The Limits of Regular Languages

Finite Memory

DFAs lack the memory to handle unbounded counting or nested structures Can't recognize languages like $\{a^nb^n\mid n\geq 0\}$

A New Tool: Context-Free Grammar (CFG)

To describe these more complex languages, we need a more powerful tool. Instead of a machine that just *recognizes* strings, we use a system of rules that *generates* these strings.

Example

Consider $L = \{a^n b^n \mid n \ge 0\}$ over $\Sigma = \{a, b\}$. Let's build a grammar!

$$S \to \varepsilon$$

 $S \to aSb$

Shorthand:
$$S \rightarrow \varepsilon \mid aSb$$

Derivation

is a sequence of steps applying the production rules. Generating string aabb:

$$S
ightarrow aSb$$
 $ightarrow aaSbb$
 $ightarrow aabb$

Example - II

CFGs are excellent for defining the syntax of programming languages. Let's build a grammar for expressions over $\{a,b,c\}$.

$$E \rightarrow E + E \mid E * E \mid T$$

 $T \rightarrow a \mid b \mid c$

Derivations.

Generating a * b

$$E \rightarrow E * E$$

$$\rightarrow T * E$$

$$\rightarrow T * T$$

$$\rightarrow a * T$$

 $\rightarrow a * b$

Generating a + a

$$E \rightarrow E + E$$

$$\rightarrow T + E$$

$$\rightarrow T + T$$

$$\rightarrow a + T$$

$$\rightarrow a + a$$

Generating a + b * c

$$E \rightarrow E + E$$

$$\rightarrow E + E * E$$

$$\rightarrow T + E * E$$

$$\rightarrow T + T * E$$

$$\rightarrow T + T * T$$

$$\rightarrow a + T * T$$

$$\rightarrow a + b * T$$

$$\rightarrow a + b * c$$

Defn

A CFG is a set of recursive rules used to generate patterns of strings. Think of it as a blueprint for a language.

Definition 3.1

A Context-Free Grammar is a 4-tuple G = (V, T, P, S), where:

V: Finite set of variables. think: syntactic categories or placeholders. (e.g., S, E, T in previous examples)

T: Finite set of **terminals** or **tokens**. actual symbols or words of the language. (e.g., a, b, c, +, * in previous examples)

P: Finite set of **production rules**. Rules have the form $A \to \alpha$, where $A \in V$ and $\alpha \in (V \cup T)^*$, i.e., α is a string consisting of variables and terminals. specifies how to replace variables with strings of variables and terminals. (e.g., $S \to aSb$ and $E \to T$) in previous examples

S: The start symbol $(S \in V)$.

Example - III

Can you write a CFG for every regular language? Example: $\Sigma=0,1$ and $L=\Sigma^*$.

$$S \to 0S \mid 1S \mid \varepsilon$$

Derivations. Generating arepsilon

 ${\it Generating}\,\,010$

$$S
ightarrow 0S$$
 Generating 0 $\rightarrow 01S$ $S
ightarrow 0S$ $\rightarrow 010S$ $\rightarrow 010$

HW: Think about an algorithm to convert a DFA to a CFG.