Rachit Nimavat

September 4, 2025

1/15

Outline

@ Recap

© Parse Tree for CFGs

© Ambiguity

2/15

Recap

The World of Regular Languages

Three Faces of Same Power

The Limit: What Can't Finite Automata Do?
Consider the language L = {a"b" | n > 0} = {¢, ab, aabb, aaabbb, ... }.
To accept L, a DFA/NFA must count the number of a's

DFA/NFA has only a finite number of states and cannot remember an arbitrarily
large count n.

Next Step?

We need machine with more power:
- Context-Free Grammars: A way to describe languages with recursive structure
- Pushdown Automata: NFA + Stack

3/15

Recap

Example

Consider L = {a™b™ | n > 0} over ¥ = {a,b}. Let's build a grammar!

Tvww

S —¢
S — asShb

Shorthand: S — ¢|aShb

Derivation

is a sequence of steps applying the production rules. Generating string aabb:

S — ash
— aasShbb
— aabb

/15

Recap

Defn: DFA

DFA is a 5-tuple A = (Q, %, 9, qy, F)

‘symbol’ description

Q finite set of states

by underlying finite alphabet

0 transition function between states
q € Q start state

FCQ accepting states

5/15

Recap

Defn: CFG

A CFG is a set of recursive rules used to generate patterns of strings. Think of it as a
blueprint for a language.

Definition 1.1
A Context-Free Grammar is a 4-tuple G = (V,T, P, S), where:

V: Finite set of variables. think: syntactic categories or placeholders. (e.g., S, E, T
in previous examples)

T: Finite set of terminals or tokens. actual symbols or words of the language. (e.g.,

a, b, c,+,* in previous examples)

P: Finite set of production rules. Rules have the form A — «, where A € V' and

a € (VUT)*, ie., «is a string consisting of variables and terminals. specifies how to
replace variables with strings of variables and terminals. (e.g., S — aSb and E — T') in

previous examples

S: The start symbol (S € V).

6/15

Example - Il

Recap

CFGs are excellent for defining the syntax of programming languages. Let’s build a

grammar for expressions over {a, b, c}.

E—>E+E|E«E|T

T—albjc

Derivations.
Generating a * b

E—-FExFE
—Tx*xFE
— T T
—axT
—axb

Generating a + a

EFE—-FE+FE
—-T+FE
—-T+T
—a+T
—a—+a

Generating a + b* ¢

EFE—-FEF+FE

—FE+ExFE
—-T+ExFE
—-T+Tx*xFE
=T +TxT
—a+Tx*T
—a+bxT

—a+bxc

7/15

Parse Tree for CFGs

Visualizing Derivations: Parse Trees
Similar to DFA, wer have Parse Trees to visualize derivation in CFGs.

Consider L = {a™b™ | n > 0} over ¥ = {a,b} and CFG S — ¢ | aSh.

The parse tree for aabb:
S

Parse tree for ab:
Parse tree for e: / \
S a S b / \

N

8/15

Parse Tree for CFGs

Defn

Consider a CFG G = (V,T, P, S). Given a string w € T*, a parse tree for w is a tree
that represents the derivation of w from the start symbol S using the production rules P.
Properties of a Parse Tree

The root node is the start symbol (5).

Each interior node is a variable (V).

Each leaf node is a terminal (T') or e.

If a node A has children X, X5, ..., X}, where X;, X,,... ¢ VUT U {e}, then
A — X, X, ... X}, must be a production rule.

Reading the leaves from left to right yields string w.

Parse trees capture the underlying syntactic structure of the string.

9/15

Parse Tree for CFGs

Example

Consider the language of expressions over ¥ = {a, b, c} with CFG:
E—-FE+E|ExE|TandT —a|b|c.

Parsing a x b + c: Parsing a x b + c:
Parsing a * b: L 2

: N /N
o N N

+

<« N1
ce—N<e—&
RN
cEe—N<—&@
ce— R
SE—N<— 1
cEe—NH<—&@
CE—N<— 1

10/15

Ambiguity

Definition 3.1

A CFG G is ambiguous if there exists a string w € L(G) such that w has more than one
distinct parse trees.

Ambiguous CFG has more than one distinct leftmost derivation for some string in the
language

Ambiguous CFG has more than one distinct rightmost derivation for some string in
the language

In programming languages, ambiguity means a line of code can be interpreted in
multiple ways, which is unacceptable. The compiler must know exactly what to do!

11/15

Ambiguity

Example - Revisted

Consider the language of expressions over ¥ = {a, b, ¢, +, *} with CFG:
E—-E+E|ExE|TandT —a|b|c.

Parsing a x b + c: Parsing a x b + c:
E E

N AN,
I\

+

E

/
SN

*

CEe—N_N<—&m
cCEe—Ne— 1

fe— N1
c€e—N<—1I
c—N<— I
cCEe—N<—1&

12/15

Ambiguity

Resolving Ambiguity

Enforcing Precedence and Associativity

Learning from our maths classes, we can enforce precedence and associativity rules in our
CFGs to resolve ambiguity. \Won't work for all ambiguities though!

Unique parse tree of a x b + c:
E

The Solution: / l \

Rewrite G with a hierarchy of rules M

Forces a single, correct interpretation.

* € NI
cC€E—Tm€«e—H

E—-E+T|T . .
T—TxF|F | |
F—alblc j ’

13/15

Ambiguity

Resolving Ambiguity

Enforcing Precedence and Associativity

Unique parse tree of a + b + ¢:
E

The Solution: / i \

Rewrite G with a hierarchy of rules

Forces a single, correct interpretation. /]j\+ 1
E + T F
poEeTiT A
T—TxF|F |
F—alblc j

Bonus:
Multiplication is given more precedence than addition What enforces this in G7
Operators are evaluated from left to right What enforces this in 7

14/15

Ambiguity

Algorithm for Ambiguity Resolution?

No such algorithm!

No algorithm that given a CFG G, decides
whether G is ambiguous or not.

There are CFLs for which all possible CFGs are WELL WHAT A
ambiguous. ' |

See, Chapter 5.4 in ALC for more details.

15/15

	Recap
	Parse Tree for CFGs
	Ambiguity

