
CS304: Automata and Formal Languages
Lec 14

Parse Trees and Ambiguity

Rachit Nimavat

September 4, 2025

1 / 15

Outline

1 Recap

2 Parse Tree for CFGs

3 Ambiguity

2 / 15

Recap

The World of Regular Languages
Three Faces of Same Power

The Limit: What Can’t Finite Automata Do?
Consider the language 𝐿 = {𝑎𝑛𝑏𝑛 ∣ 𝑛 ≥ 0} = {𝜖, 𝑎𝑏, 𝑎𝑎𝑏𝑏, 𝑎𝑎𝑎𝑏𝑏𝑏, … }.

To accept 𝐿, a DFA/NFA must count the number of 𝑎’s
DFA/NFA has only a finite number of states and cannot remember an arbitrarily
large count 𝑛.

Next Step?
We need machine with more power:

- Context-Free Grammars: A way to describe languages with recursive structure
- Pushdown Automata: NFA + Stack

3 / 15

Recap

Example
Consider 𝐿 = {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 0} over Σ = {𝑎, 𝑏}. Let’s build a grammar!

𝑆 → 𝜀
𝑆 → a𝑆b

Shorthand: 𝑆 → 𝜀 | a𝑆b

Derivation
is a sequence of steps applying the production rules. Generating string aabb:

𝑆 → a𝑆b
→ aa𝑆bb
→ aabb

4 / 15

Recap

Defn: DFA

DFA is a 5-tuple 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

‘symbol’

𝑄
Σ
𝛿
𝑞0 ∈ 𝑄
𝐹 ⊆ 𝑄

description

finite set of states
underlying finite alphabet
transition function between states
start state
accepting states

5 / 15

Recap

Defn: CFG
A CFG is a set of recursive rules used to generate patterns of strings. Think of it as a
blueprint for a language.
Definition 1.1
A Context-Free Grammar is a 4-tuple 𝐺 = (𝑉 , 𝑇 , 𝑃 , 𝑆), where:

V: Finite set of variables. think: syntactic categories or placeholders. (e.g., 𝑆, 𝐸, 𝑇
in previous examples)
T: Finite set of terminals or tokens. actual symbols or words of the language. (e.g.,
a,b,c,+,* in previous examples)
P: Finite set of production rules. Rules have the form 𝐴 → 𝛼, where 𝐴 ∈ 𝑉 and
𝛼 ∈ (𝑉 ∪ 𝑇)∗, i.e., 𝛼 is a string consisting of variables and terminals. specifies how to
replace variables with strings of variables and terminals. (e.g., 𝑆 → a𝑆b and 𝐸 → 𝑇) in
previous examples
S: The start symbol (𝑆 ∈ 𝑉).

6 / 15

Recap

Example - II
CFGs are excellent for defining the syntax of programming languages. Let’s build a
grammar for expressions over {𝑎, 𝑏, 𝑐}.

𝐸 → 𝐸 + 𝐸 | 𝐸 ∗ 𝐸 | 𝑇
𝑇 → a | b | c

Derivations.

Generating 𝑎 ∗ 𝑏

𝐸 → 𝐸 ∗ 𝐸
→ 𝑇 ∗ 𝐸
→ 𝑇 ∗ 𝑇
→ 𝑎 ∗ 𝑇
→ 𝑎 ∗ 𝑏

Generating 𝑎 + 𝑎

𝐸 → 𝐸 + 𝐸
→ 𝑇 + 𝐸
→ 𝑇 + 𝑇
→ 𝑎 + 𝑇
→ 𝑎 + 𝑎

Generating 𝑎 + 𝑏 ∗ 𝑐

𝐸 → 𝐸 + 𝐸
→ 𝐸 + 𝐸 ∗ 𝐸
→ 𝑇 + 𝐸 ∗ 𝐸
→ 𝑇 + 𝑇 ∗ 𝐸
→ 𝑇 + 𝑇 ∗ 𝑇
→ 𝑎 + 𝑇 ∗ 𝑇
→ 𝑎 + 𝑏 ∗ 𝑇
→ 𝑎 + 𝑏 ∗ 𝑐

7 / 15

Parse Tree for CFGs

Visualizing Derivations: Parse Trees
Similar to DFA, wer have Parse Trees to visualize derivation in CFGs.
Consider 𝐿 = {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 0} over Σ = {𝑎, 𝑏} and CFG 𝑆 → 𝜀 | a𝑆b.

Parse tree for 𝜀:
𝑆

𝜀

The parse tree for 𝑎𝑎𝑏𝑏:
𝑆

𝑎 𝑆

𝑎 𝑆

𝜀

𝑏

𝑏

Parse tree for 𝑎𝑏:
𝑆

𝑎 𝑆

𝜀

𝑏

8 / 15

Parse Tree for CFGs

Defn

Consider a CFG 𝐺 = (𝑉 , 𝑇 , 𝑃 , 𝑆). Given a string 𝑤 ∈ 𝑇 ∗, a parse tree for 𝑤 is a tree
that represents the derivation of 𝑤 from the start symbol 𝑆 using the production rules 𝑃 .

Properties of a Parse Tree
The root node is the start symbol (𝑆).
Each interior node is a variable (𝑉).
Each leaf node is a terminal (𝑇) or 𝜖.
If a node 𝐴 has children 𝑋1, 𝑋2, … , 𝑋𝑘, where 𝑋1, 𝑋2, … ∈ 𝑉 ∪ 𝑇 ∪ {𝜀}, then
𝐴 → 𝑋1𝑋2 … 𝑋𝑘 must be a production rule.
Reading the leaves from left to right yields string 𝑤.

Parse trees capture the underlying syntactic structure of the string.

9 / 15

Parse Tree for CFGs

Example
Consider the language of expressions over Σ = {𝑎, 𝑏, 𝑐} with CFG:
𝐸 → 𝐸 + 𝐸 | 𝐸 ∗ 𝐸 | 𝑇 and 𝑇 → a | b | c.

Parsing 𝑎 ∗ 𝑏:
𝐸

𝐸

𝑇

𝑎

∗ 𝐸

𝑇

𝑏

Parsing 𝑎 ∗ 𝑏 + 𝑐:
𝐸

𝐸

𝐸

𝑇

𝑎

∗ 𝐸

𝑇

𝑏

+ 𝐸

𝑇

𝑐

Parsing 𝑎 ∗ 𝑏 + 𝑐:
𝐸

𝐸

𝑇

𝑎

∗ 𝐸

𝐸

𝑇

𝑏

+ 𝐸

𝑇

𝑐

HW: Think about which parse tree is correct? How do you propose handling
ambiguity? 10 / 15

Ambiguity

Definition 3.1
A CFG 𝐺 is ambiguous if there exists a string 𝑤 ∈ 𝐿(𝐺) such that 𝑤 has more than one
distinct parse trees.

Ambiguous CFG has more than one distinct leftmost derivation for some string in the
language
Ambiguous CFG has more than one distinct rightmost derivation for some string in
the language
In programming languages, ambiguity means a line of code can be interpreted in
multiple ways, which is unacceptable. The compiler must know exactly what to do!

11 / 15

Ambiguity

Example - Revisted

Consider the language of expressions over Σ = {𝑎, 𝑏, 𝑐, +, ∗} with CFG:
𝐸 → 𝐸 + 𝐸 | 𝐸 ∗ 𝐸 | 𝑇 and 𝑇 → a | b | c.

Parsing 𝑎 ∗ 𝑏 + 𝑐:
𝐸

𝐸

𝐸

𝑇

𝑎

∗ 𝐸

𝑇

𝑏

+ 𝐸

𝑇

𝑐

Parsing 𝑎 ∗ 𝑏 + 𝑐:
𝐸

𝐸

𝑇

𝑎

∗ 𝐸

𝐸

𝑇

𝑏

+ 𝐸

𝑇

𝑐

12 / 15

Ambiguity

Resolving Ambiguity
Enforcing Precedence and Associativity

Learning from our maths classes, we can enforce precedence and associativity rules in our
CFGs to resolve ambiguity. Won’t work for all ambiguities though!

The Solution:
Rewrite 𝐺 with a hierarchy of rules
Forces a single, correct interpretation.

𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → a | b | c

Unique parse tree of 𝑎 ∗ 𝑏 + 𝑐:
𝐸

𝐸

𝑇

𝑇

𝐹

𝑎

∗ 𝐹

𝑏

+ 𝑇

𝐹

𝑐

13 / 15

Ambiguity

Resolving Ambiguity
Enforcing Precedence and Associativity

The Solution:
Rewrite 𝐺 with a hierarchy of rules
Forces a single, correct interpretation.

𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → a | b | c

Unique parse tree of 𝑎 + 𝑏 + 𝑐:
𝐸

𝐸

𝐸

𝑇

𝐹

𝑎

+ 𝑇

𝑏

+ 𝑇

𝐹

𝑐

Bonus:
Multiplication is given more precedence than addition What enforces this in 𝐺?
Operators are evaluated from left to right What enforces this in 𝐺?

14 / 15

Ambiguity

Algorithm for Ambiguity Resolution?

No such algorithm!

No algorithm that given a CFG 𝐺, decides
whether 𝐺 is ambiguous or not.

There are CFLs for which all possible CFGs are
ambiguous.

See, Chapter 5.4 in ALC for more details.

15 / 15

	Recap
	Parse Tree for CFGs
	Ambiguity

