Rachit Nimavat

September 8, 2025

1/16

Outline

© Recap

© Derivation and Inference

© Parsers

@ Applications of CFGs

2/16

Recap

The World of Regular Languages

Three Faces of Same Power

The Limit: What Can't Finite Automata Do?
Consider the language L = {a"b" | n > 0} = {¢, ab, aabb, aaabbb, ... }.
To accept L, a DFA/NFA must count the number of a's

DFA/NFA has only a finite number of states and cannot remember an arbitrarily
large count n.

Next Step?

We need machine with more power:
- Context-Free Grammars: A way to describe languages with recursive structure
- Pushdown Automata: NFA + Stack

3/16

Recap

Example

Consider L = {balanced parentheses} over ¥ = {(,)}. e.g. ()(()) € L but)(¢ L.

Let's build a grammar!

Derivation

is a sequence of steps applying the production rules.
Generating string () (()):

S — SS
- ()S
— ()(S)
- O00)

S—=01(5)155

4/16

Recap

Defn: CFG

A CFG is a set of recursive rules used to generate patterns of strings. Think of it as a
blueprint for a language.

Definition 1.1
A Context-Free Grammar is a 4-tuple G = (V,T, P, S), where:

V: Finite set of variables. think: syntactic categories or placeholders. (e.g., S, E, T
in previous examples)

T: Finite set of terminals or tokens. actual symbols or words of the language. (e.g.,

a, b, c,+,* in previous examples)

P: Finite set of production rules. Rules have the form A — «, where A € V' and

a € (VUT)*, ie., «is a string consisting of variables and terminals. specifies how to
replace variables with strings of variables and terminals. (e.g., S — aSb and E — T') in

previous examples

S: The start symbol (S € V).

5/16

Recap

Visualizing Derivations: Parse Trees
Similar to DFA, wer have Parse Trees to visualize derivation in CFGs.

Consider L = {a™b™ | n > 0} over ¥ = {a,b} and CFG S — ¢ | aSh.

The parse tree for aabb:
S

Parse tree for ab:
Parse tree for e: / \
S a S b / \

N

6/16

Recap

Definition 1.2

A CFG G is ambiguous if there exists a string w € L(G) such that w has more than one
distinct parse trees.

7/16

Example - Revisted

Consider the language of expressions over ¥ = {a, b, ¢, +, *} with CFG:
E—-E+E|ExE|TandT —a|b|c.

Parsing a x b + c: Parsing a x b + c:
E E

N AN,
I\

+

E

/
SN

*

CEe—N_N<—&m
cCEe—Ne— 1

fe— N1
c€e—N<—1I
c—N<— I
cCEe—N<—1&

8/16

Recap

Resolving Ambiguity

Enforcing Precedence and Associativity

Learning from our maths classes, we can enforce precedence and associativity rules in our
CFGs to resolve ambiguity. \Won't work for all ambiguities though!

Unique parse tree of a x b + c:
E

The Solution: / l \

Rewrite G with a hierarchy of rules M

Forces a single, correct interpretation.

* € NI
cC€E—Tm€«e—H

E—-E+T|T . .
T—TxF|F | |
F—alblc j ’

9/16

Recap

Resolving Ambiguity

Enforcing Precedence and Associativity

Unique parse tree of a + b + ¢:
E

The Solution: / i \

Rewrite G with a hierarchy of rules

Forces a single, correct interpretation. /]j\+ 1
E + T F
poEeTiT A
T—TxF|F |
F—alblc j

Bonus:
Multiplication is given more precedence than addition What enforces this in G7
Operators are evaluated from left to right What enforces this in 7

10/16

Recap

Algorithm for Ambiguity Resolution?

No such algorithm!

No algorithm that given a CFG G, decides
whether G is ambiguous or not.

There are CFLs for which all possible CFGs are WELL WHAT A
ambiguous. ' |

See, Chapter 5.4 in ALC for more details.

11/16

Derivation and Inference

Derivation and Inference

Derivation

- start from the start symbol and apply Inference

production rules to derive a string in the
language

goes from root to leaves in parse trees
S — a; = ay... — w, where w is a
string in the language

shorthand: S = w if such a chain exists

— denotes a production rule,
= denotes a single step in derivation,

and = denotes zero-or-more steps of

derivation

compute the language for each
individual variables (a.k.a.
non-terminals)

start from a string and apply production
rules to infer the non-terminals that can
generate it

can be thought of as the reverse process
of derivation

don't worry about it for this course

12/16

Derivation and Inference

Homework

See Chapter 5.2 in ALC to see proofs of equivalence between leftmost/rightmost
derivations and parse trees.

13/16

Parsers

Parsers

- CFGs describe programming languages

You'll learn more about this in the compilers course

There's an algorithm to convert a CFG to a parser

There are two main types of parsers:

top-down parsers. think: derivations (e.g., recursive descent)
bottom-up parsers. think: recursive inference (e.g., LR parsers)

14/16

Parsers

Example

Parsing if and else clauses in C. if may appear balanced by an else clause or may appear
unbalanced. else clause must be matched to a preceding if clause.

S —c|1iS|iSe|SsS

liele, 1ie, 1e1 are valid strings generated by this CFG.

el, ieeil, e cannot be generated by this CFG.

For more examples and applications involving YACC, XML, YAML, and more, wait until
compilers course!

15/16

Applications of CFGs

CFGs in the Wild

Syntax, Semantics, and Chomsky
it Bk b
i d
, ‘m,‘[t:p{!@;@
ilh

Noam Chomsky (1928-) is a linguist, cognitive scientist,
and political activist

L)

N
o N

Revolutionized linguistics by proposing that human
languages have an underlying structure that can be
modeled using formal grammars in 1950s

-\
Noam Chomsky

Syntax vs. Semantics CFGs can mostly capture syntax of a language, while other
formalisms (e.g., lambda calculus) capture semantics.
The dog runs. The dogs run. The verb is not context-free depends on whether the
subject is singular or plural

Colorless green ideas sleep furiously. Grammatically correct but no logical meaning
16/16

	Recap
	Derivation and Inference
	Parsers
	Applications of CFGs

