
CS304: Automata and Formal Languages
Lec 15
Parsers

Rachit Nimavat

September 8, 2025

1 / 16

Outline

1 Recap

2 Derivation and Inference

3 Parsers

4 Applications of CFGs

2 / 16

Recap

The World of Regular Languages
Three Faces of Same Power

The Limit: What Can’t Finite Automata Do?
Consider the language 𝐿 = {𝑎𝑛𝑏𝑛 ∣ 𝑛 ≥ 0} = {𝜖, 𝑎𝑏, 𝑎𝑎𝑏𝑏, 𝑎𝑎𝑎𝑏𝑏𝑏, … }.

To accept 𝐿, a DFA/NFA must count the number of 𝑎’s
DFA/NFA has only a finite number of states and cannot remember an arbitrarily
large count 𝑛.

Next Step?
We need machine with more power:

- Context-Free Grammars: A way to describe languages with recursive structure
- Pushdown Automata: NFA + Stack

3 / 16

Recap

Example

Consider 𝐿 = {balanced parentheses} over Σ = {(,)}. e.g. ()(()) ∈ 𝐿 but)(∉ 𝐿.
Let’s build a grammar!

𝑆 → () | (𝑆) | 𝑆𝑆

Derivation
is a sequence of steps applying the production rules.
Generating string ()(()):

𝑆 → SS
→ ()S
→ ()(S)
→ ()(())

4 / 16

Recap

Defn: CFG
A CFG is a set of recursive rules used to generate patterns of strings. Think of it as a
blueprint for a language.
Definition 1.1
A Context-Free Grammar is a 4-tuple 𝐺 = (𝑉 , 𝑇 , 𝑃 , 𝑆), where:

V: Finite set of variables. think: syntactic categories or placeholders. (e.g., 𝑆, 𝐸, 𝑇
in previous examples)
T: Finite set of terminals or tokens. actual symbols or words of the language. (e.g.,
a,b,c,+,* in previous examples)
P: Finite set of production rules. Rules have the form 𝐴 → 𝛼, where 𝐴 ∈ 𝑉 and
𝛼 ∈ (𝑉 ∪ 𝑇)∗, i.e., 𝛼 is a string consisting of variables and terminals. specifies how to
replace variables with strings of variables and terminals. (e.g., 𝑆 → a𝑆b and 𝐸 → 𝑇) in
previous examples
S: The start symbol (𝑆 ∈ 𝑉).

5 / 16

Recap

Visualizing Derivations: Parse Trees
Similar to DFA, wer have Parse Trees to visualize derivation in CFGs.
Consider 𝐿 = {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 0} over Σ = {𝑎, 𝑏} and CFG 𝑆 → 𝜀 | a𝑆b.

Parse tree for 𝜀:
𝑆

𝜀

The parse tree for 𝑎𝑎𝑏𝑏:
𝑆

𝑎 𝑆

𝑎 𝑆

𝜀

𝑏

𝑏

Parse tree for 𝑎𝑏:
𝑆

𝑎 𝑆

𝜀

𝑏

6 / 16

Recap

Definition 1.2
A CFG 𝐺 is ambiguous if there exists a string 𝑤 ∈ 𝐿(𝐺) such that 𝑤 has more than one
distinct parse trees.

7 / 16

Recap

Example - Revisted

Consider the language of expressions over Σ = {𝑎, 𝑏, 𝑐, +, ∗} with CFG:
𝐸 → 𝐸 + 𝐸 | 𝐸 ∗ 𝐸 | 𝑇 and 𝑇 → a | b | c.

Parsing 𝑎 ∗ 𝑏 + 𝑐:
𝐸

𝐸

𝐸

𝑇

𝑎

∗ 𝐸

𝑇

𝑏

+ 𝐸

𝑇

𝑐

Parsing 𝑎 ∗ 𝑏 + 𝑐:
𝐸

𝐸

𝑇

𝑎

∗ 𝐸

𝐸

𝑇

𝑏

+ 𝐸

𝑇

𝑐

8 / 16

Recap

Resolving Ambiguity
Enforcing Precedence and Associativity

Learning from our maths classes, we can enforce precedence and associativity rules in our
CFGs to resolve ambiguity. Won’t work for all ambiguities though!

The Solution:
Rewrite 𝐺 with a hierarchy of rules
Forces a single, correct interpretation.

𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → a | b | c

Unique parse tree of 𝑎 ∗ 𝑏 + 𝑐:
𝐸

𝐸

𝑇

𝑇

𝐹

𝑎

∗ 𝐹

𝑏

+ 𝑇

𝐹

𝑐

9 / 16

Recap

Resolving Ambiguity
Enforcing Precedence and Associativity

The Solution:
Rewrite 𝐺 with a hierarchy of rules
Forces a single, correct interpretation.

𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → a | b | c

Unique parse tree of 𝑎 + 𝑏 + 𝑐:
𝐸

𝐸

𝐸

𝑇

𝐹

𝑎

+ 𝑇

𝑏

+ 𝑇

𝐹

𝑐

Bonus:
Multiplication is given more precedence than addition What enforces this in 𝐺?
Operators are evaluated from left to right What enforces this in 𝐺?

10 / 16

Recap

Algorithm for Ambiguity Resolution?

No such algorithm!

No algorithm that given a CFG 𝐺, decides
whether 𝐺 is ambiguous or not.

There are CFLs for which all possible CFGs are
ambiguous.

See, Chapter 5.4 in ALC for more details.

11 / 16

Derivation and Inference

Derivation and Inference

Derivation
- start from the start symbol and apply

production rules to derive a string in the
language

- goes from root to leaves in parse trees
- 𝑆 → 𝛼1 → 𝛼2 … → 𝑤, where 𝑤 is a

string in the language
- shorthand: 𝑆 ∗=⇒ 𝑤 if such a chain exists

→ denotes a production rule,
⇒ denotes a single step in derivation,
and ∗=⇒ denotes zero-or-more steps of
derivation

Inference
- compute the language for each

individual variables (a.k.a.
non-terminals)

- start from a string and apply production
rules to infer the non-terminals that can
generate it

- can be thought of as the reverse process
of derivation

- don’t worry about it for this course

12 / 16

Derivation and Inference

Homework

See Chapter 5.2 in ALC to see proofs of equivalence between leftmost/rightmost
derivations and parse trees.

13 / 16

Parsers

Parsers

- CFGs describe programming languages
- You’ll learn more about this in the compilers course
- There’s an algorithm to convert a CFG to a parser
- There are two main types of parsers:

top-down parsers. think: derivations (e.g., recursive descent)
bottom-up parsers. think: recursive inference (e.g., LR parsers)

14 / 16

Parsers

Example
Parsing if and else clauses in C. if may appear balanced by an else clause or may appear
unbalanced. else clause must be matched to a preceding if clause.

𝑆 → 𝜀 | i𝑆 | i𝑆e | 𝑆𝑆

ieie, iie, iei are valid strings generated by this CFG.

ei, ieeii, e cannot be generated by this CFG.

For more examples and applications involving YACC, XML, YAML, and more, wait until
compilers course!

HW: Is this CFG ambiguous?
15 / 16

Applications of CFGs

CFGs in the Wild
Syntax, Semantics, and Chomsky

Noam Chomsky

Noam Chomsky (1928-) is a linguist, cognitive scientist,
and political activist
Revolutionized linguistics by proposing that human
languages have an underlying structure that can be
modeled using formal grammars in 1950s

Syntax vs. Semantics CFGs can mostly capture syntax of a language, while other
formalisms (e.g., lambda calculus) capture semantics.

The dog runs. The dogs run. The verb is not context-free depends on whether the
subject is singular or plural
Colorless green ideas sleep furiously. Grammatically correct but no logical meaning

16 / 16

	Recap
	Derivation and Inference
	Parsers
	Applications of CFGs

