Rachit Nimavat

September 11, 2025

1/18

Outline

© Recap

© Chomsky Normal Form - CNF

© Pushdown Automaton - PDA

2/18

Recap

Defn: CFG

A CFG is a set of recursive rules used to generate patterns of strings. Think of it as a
blueprint for a language.

Definition 1.1
A Context-Free Grammar is a 4-tuple G = (V,T, P, S), where:

V: Finite set of variables. think: syntactic categories or placeholders. (e.g., S, E, T
in previous examples)

T: Finite set of terminals or tokens. actual symbols or words of the language. (e.g.,

a, b, c,+,* in previous examples)

P: Finite set of production rules. Rules have the form A — «, where A € V' and

a € (VUT)*, ie., «is a string consisting of variables and terminals. specifies how to
replace variables with strings of variables and terminals. (e.g., S — aSb and E — T') in

previous examples

S: The start symbol (S € V).

3/18

Recap

Visualizing Derivations: Parse Trees
Similar to DFA, wer have Parse Trees to visualize derivation in CFGs.

Consider L = {a™b™ | n > 0} over ¥ = {a,b} and CFG S — ¢ | aSh.

The parse tree for aabb:
S

Parse tree for ab:
Parse tree for e: / \
S a S b / \

N

4/18

Recap

Definition 1.2

A CFG G is ambiguous if there exists a string w € L(G) such that w has more than one
distinct parse trees.

5/18

Example - Revisted

Consider the language of expressions over ¥ = {a, b, ¢, +, *} with CFG:
E—-E+E|ExE|TandT —a|b|c.

Parsing a x b + c: Parsing a x b + c:
E E

N AN,
I\

+

E

/
SN

*

CEe—N_N<—&m
cCEe—Ne— 1

fe— N1
c€e—N<—1I
c—N<— I
cCEe—N<—1&

6/18

Recap

Resolving Ambiguity

Enforcing Precedence and Associativity

Learning from our maths classes, we can enforce precedence and associativity rules in our
CFGs to resolve ambiguity. \Won't work for all ambiguities though!

Unique parse tree of a x b + c:
E

The Solution: / l \

Rewrite G with a hierarchy of rules M

Forces a single, correct interpretation.

* € NI
cC€E—Tm€«e—H

E—-E+T|T . .
T—TxF|F | |
F—alblc j ’

7/18

Recap

Resolving Ambiguity

Enforcing Precedence and Associativity

Unique parse tree of a + b + ¢:
E

The Solution: / i \

Rewrite G with a hierarchy of rules

Forces a single, correct interpretation. /]j\+ 1
E + T F
poEeTiT A
T—TxF|F |
F—alblc j

Bonus:
Multiplication is given more precedence than addition What enforces this in G7
Operators are evaluated from left to right What enforces this in 7

8/18

Recap

Algorithm for Ambiguity Resolution?

No such algorithm!

No algorithm that given a CFG G, decides
whether G is ambiguous or not.

There are CFLs for which all possible CFGs are WELL WHAT A
ambiguous. ' |

See, Chapter 5.4 in ALC for more details.

9/18

Chomsky Normal Form - CNF

Simplifying CFGs

So far, our grammars contained complex, redundant, and/or useless rules

Messy grammars are hard to analyze and convert into parsers. How can we be sure a
grammar doesn’t contain infinite loops or dead-end rules?

Standardize CFGs! This makes grammars easier to work with, both for humans and
for algorithms

This is the first step for industrial-grade parsers

10/18

Chomsky Normal Form - CNF

Useless Productions and Symbols

Non-Generating Symbols. A variable A is non-generating if it can never derive a
string of only terminals. It's a dead end.
eg. S— aA|band A — aA
How to identify these?
Identify generating symbols. lteratively find all variables that produce a
string of terminals and/or generating symbols. Any variable that is not
marked generating is non-generating.
Unreachable Symbols. A variable A is unreachable if there is no derivation from
the start variable S that uses A.
e.g. S—>aS|bandA—>C
How to identify these?
Start with the reachable symbol: the start symbol. lteratively add all
symbols that appear on the right-hand side of productions for any
already-reachable variable. Any variable that is not marked reachable is

non-reachable.
11/18

Chomsky Normal Form - CNF

Chomsky Normal Form (CNF)

Goal: Convert any CFG to a standard form without changing its language.
Definition 2.1
A CFG in CNF has production rules of the form:

A — BC Variable yields two variables. Note B or C' might be equal or equal to A.
A — a Variable yields a single terminal.

Does not have any useless symbols.

The empty string ¢ is not allowed. If ¢ € L, add a special rule S — ¢.

Benefits:
Clean and Standard grammar
No messy edge-cases, only two types of rules

Great for theoretical analysis and writing algorithms

12/18

Chomsky Normal Form - CNF

CFG to CNF Example

Balanced parenthesis: S — () | (S) |SS

13/18

Chomsky Normal Form - CNF

CFG to CNF Example 2

S — ASA|aB
A—B|S
B—b|e

14/18

Pushdown Automaton - PDA

Equivalent of a DFA for CFGs?

Benefits of Hindsight

Consider a CFG S — ()| (S)|SS of the language L of balanced parentheses.
How to build a machine that accepts L?

def recognize(w):
stack []
for ¢ in w:
if ¢ "(': stack.append(c)
elif c DR
if not len(stack): return False
stack.pop()
return not len(stack)

15/18

Pushdown Automaton - PDA

Stripping the Syntax

Read-only, one-way input (just like an NFA)

Finite states: While no explicit state variable, we go in “reject state” once the stack
is empty

The stack: New component!

Transition rules: What to do based on the current input symbol and the top of the
stack

This machine (NFA + stack) is a Pushdown Automaton (PDA)!

16/18

Pushdown Automaton - PDA

Pushdown Automaton (PDA): Formal Definition

Definition 3.1
PDA is a T-tuple: (Q,%,T',6,qy, Zy, F), where:
Q is a finite set of states
qo € Q is the start state
F C Q is the set of accepting states
Y is the alphabet
I' is the stack alphabet
Zy € I' is the initial stack symbol
d is the transition function

0:Q x X xI'— @ xI'™is the transition function

d(g,a,x) denotes what to do when we are in state ¢, read a, and the top of the
stack is z: tells us which state to move to, and what stack alphabet symbols to
replace x with in the stack

17/18

Pushdown Automaton - PDA

Homework!

Write the PDA for recognizing the language of balanced parentheses.

18/18

	Recap
	Chomsky Normal Form - CNF
	Pushdown Automaton - PDA

