CS304: Automata and Formal Languages

Lec 17

PDA = CFG

Rachit Nimavat

September 16, 2025

Outline

- Recap
- Defn: PDA
- \bigcirc CFG = PDA
- CFG to PDA

Defn: CFG

A CFG is a set of recursive rules used to generate patterns of strings. Think of it as a blueprint for a language.

Definition 1.1

A Context-Free Grammar is a 4-tuple G = (V, T, P, S), where:

V: Finite set of variables. think: syntactic categories or placeholders. (e.g., S, E, T in previous examples)

T: Finite set of **terminals** or **tokens**. actual symbols or words of the language. (e.g., a, b, c, +, * in previous examples)

P: Finite set of **production rules**. Rules have the form $A \to \alpha$, where $A \in V$ and $\alpha \in (V \cup T)^*$, i.e., α is a string consisting of variables and terminals. specifies how to replace variables with strings of variables and terminals. (e.g., $S \to aSb$ and $E \to T$) in previous examples

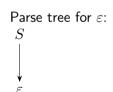
S: The start symbol $(S \in V)$.

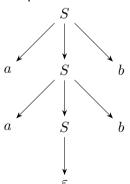
Visualizing Derivations: Parse Trees

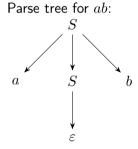
Similar to DFA, wer have Parse Trees to visualize derivation in CFGs.

Consider $L=\{a^nb^n\mid n\geq 0\}$ over $\Sigma=\{a,b\}$ and CFG $S\to \varepsilon\mid \mathsf{a} S\mathsf{b}.$

The parse tree for aabb:







Simplifying CFGs

Useless Productions and Symbols

Standardize CFGs! This makes grammars easier to work with, both for humans and for algorithms

Non-Generating Symbols. A variable A is non-generating if it can never derive a string of only terminals. It's a dead end.

Unreachable Symbols. A variable A is unreachable if there is no derivation from the start variable S that uses A.

Chomsky Normal Form (CNF)

Goal: Convert any CFG to a standard form without changing its language.

Definition 1.2

A CFG in CNF has production rules of the form:

 $A \to BC$ Variable yields two variables. Note B or C might be equal or equal to A.

A
ightarrow a Variable yields a single terminal.

Does not have any useless symbols.

The empty string ε is not allowed. If $\varepsilon \in L$, add a special rule $S \to \varepsilon$.

Benefits:

Clean and Standard grammar

No messy edge-cases, only two types of rules

Great for theoretical analysis and writing algorithms

CFG to CNF Example

Balanced parenthesis: $S \rightarrow () | (S) | SS$

On Board!

Equivalent of a DFA for CFGs?

Benefits of Hindsight

Consider a CFG S \rightarrow () | (S) | SS of the language L of balanced parentheses. How to build a machine that accepts L?

Stripping the Syntax

Read-only, one-way input (just like an NFA)

Finite states: While no explicit state variable, we go in "reject state" once the stack is empty

The stack: New component!

Transition rules: What to do based on the current input symbol and the top of the stack

This machine (NFA + stack) is a Pushdown Automaton (PDA)!

Pushdown Automaton (PDA): Formal Definition

Definition 2.1

PDA is a 7-tuple: $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, where:

Q is a finite set of states

 $q_0 \in Q$ is the start state

 $F\subseteq Q$ is the set of accepting states

 Σ is the alphabet

 Γ is the stack alphabet

 $Z_0 \in \Gamma$ is the initial stack symbol

 δ is the transition function

 $\delta: Q \times \Sigma \times \Gamma \to \mathcal{P}_{fin}(Q \times \Gamma^*)$ is the transition function

 $\delta(q,a,x)$ is a finite set of choices for when we are in state q, read a, and the top of the stack is x: tells us which state to move to, and what stack alphabet symbols to replace x with in the stack

Example: Balanced Square Brackets

$$S \to \varepsilon | [S] | SS$$

States $Q = \left\{q_0, q_f\right\}$ where q_0 is the start state and q_f is the only accepting state

$$\Sigma = \{[\,,\,]\}$$

 $\Gamma = \{Z_0, [\,\}$ where Z_0 is the initial stack symbol

Transition function δ :

Push in the stack when we see a [:

$$\delta(q_0, [, Z_0) = \{(q_0, Z_0[)\}\$$

$$\delta(q_0, [, [) = \{(q_0, [])\}\$$

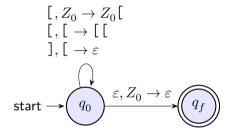
Pop from the stack when we see a], if possible:

$$\delta(q_0,], [) = \{(q_0, \varepsilon)\}$$

Accept the string if we reach the end of input and the stack has only \mathbb{Z}_0 :

$$\delta(q_0,\varepsilon,Z_0)=\left\{(q_f,\varepsilon)\right\}$$

Example Diagram: Balanced Square Brackets



HW: Draw PDA for Balanced Square Brackets that does not accept ε HW: There's another way to define PDA Acceptance: PDA accepts if it ends in empty stack (regardless of state). See Chapter 6.2 of ALC to see its equivalence with our

accepting state definition.

Example: Even Palindromes

$$S \rightarrow \varepsilon \mid aSa \mid bSb$$

States $Q=\left\{q_0,q_1,q_f\right\}$ where q_0 is the start state and q_f is the only accepting state $\Sigma=\left\{\text{a,b}\right\}$

 $\Gamma = \{Z_0, a, b\}$ where Z_0 is the initial stack symbol

Transition function δ :

Stack Push:

For all $c_1 \in \{a, b\}$ and $c_2 \in \{a, b, Z_0\}$: $\delta(q_0, c_1, c_2) = \{(q_0, c_2c_1)\}$ Spontaneously move to state q_1 to start popping:

For all $c \in \{a, b, Z_0\}$: $\delta(q_0, \varepsilon, c) = \{(q_1, c)\}$

Stack Pop:

For all $c \in \{a, b\}$: $\delta(q_1, c, c) = \{(q_1, \varepsilon)\}$

Accept the string if we reach the end of input and the stack has only \mathbb{Z}_0 :

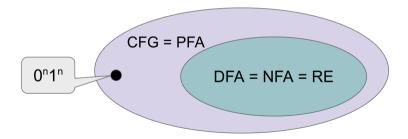
$$\delta(q_1, \varepsilon, Z_0) = \{(q_f, \varepsilon)\}$$

HW: Construct PDA and draw diagram for all Palindromes

Like Automata Trinity, we have another equivalence:

Theorem 3.1

A language is context-free if and only if it is recognized by a pushdown automaton.



Converting CFG to a PDA

Consider a CFG G = (V, T, P, S). Construct a PDA M as follows:

States $Q = \left\{q_0, q_f\right\}$ where q_0 is the start state and q_f is the only accepting state

$$\Sigma = T$$

 $\Gamma = V \cup T \cup \{Z_0\}$ where Z_0 is the initial stack symbol

Transition function δ :

For each variable $A \in V$.

$$\delta(q_0,\varepsilon,A) = \{(q_0,\alpha) \mid \text{for each production rule } A \to \alpha \text{ of } P\}$$

For each terminal $a \in T$,

$$\delta(q_0,a,a) = \{(q_0,\varepsilon)\}$$

For when the stack is empty (except for Z_0) and input is fully read,

$$\delta(q_0,\varepsilon,Z_0) = \left\{ (q_f,\varepsilon) \right\}$$

HW: Prove that the above PDA M accepts the same language as the CFG G.