Rachit Nimavat

September 16, 2025

1/15

Outline

@ Recap
© Defn: PDA
© CFG = PDA

@ CFG to PDA

2/15

Recap

Defn: CFG

A CFG is a set of recursive rules used to generate patterns of strings. Think of it as a
blueprint for a language.

Definition 1.1
A Context-Free Grammar is a 4-tuple G = (V,T, P, S), where:

V: Finite set of variables. think: syntactic categories or placeholders. (e.g., S, E, T
in previous examples)

T: Finite set of terminals or tokens. actual symbols or words of the language. (e.g.,

a, b, c,+,* in previous examples)

P: Finite set of production rules. Rules have the form A — «, where A € V' and

a € (VUT)*, ie., «is a string consisting of variables and terminals. specifies how to
replace variables with strings of variables and terminals. (e.g., S — aSb and E — T') in

previous examples

S: The start symbol (S € V).

3/15

Recap

Visualizing Derivations: Parse Trees
Similar to DFA, wer have Parse Trees to visualize derivation in CFGs.

Consider L = {a™b™ | n > 0} over ¥ = {a,b} and CFG S — ¢ | aSh.

The parse tree for aabb:
S

Parse tree for ab:
Parse tree for e: / \
S a S b / \

N

4/15

Recap

Simplifying CFGs

Useless Productions and Symbols

Standardize CFGs! This makes grammars easier to work with, both for humans and for
algorithms
Non-Generating Symbols. A variable A is non-generating if it can never derive a
string of only terminals. It's a dead end.
Unreachable Symbols. A variable A is unreachable if there is no derivation from
the start variable S that uses A.

5/15

Recap

Chomsky Normal Form (CNF)

Goal: Convert any CFG to a standard form without changing its language.
Definition 1.2
A CFG in CNF has production rules of the form:

A — BC Variable yields two variables. Note B or C' might be equal or equal to A.
A — a Variable yields a single terminal.

Does not have any useless symbols.

The empty string ¢ is not allowed. If ¢ € L, add a special rule S — ¢.

Benefits:
Clean and Standard grammar
No messy edge-cases, only two types of rules

Great for theoretical analysis and writing algorithms

6/15

Recap

CFG to CNF Example

Balanced parenthesis: S — () | (S) |SS

7/15

Recap

Equivalent of a DFA for CFGs?

Benefits of Hindsight

Consider a CFG S — ()| (S)|SS of the language L of balanced parentheses.
How to build a machine that accepts L?

def recognize(w):
stack []
for ¢ in w:
if ¢ "(': stack.append(c)
elif c DR
if not len(stack): return False
stack.pop()
return not len(stack)

8/15

Recap

Stripping the Syntax

Read-only, one-way input (just like an NFA)

Finite states: While no explicit state variable, we go in “reject state” once the stack
is empty

The stack: New component!

Transition rules: What to do based on the current input symbol and the top of the
stack

This machine (NFA + stack) is a Pushdown Automaton (PDA)!

9/15

Defn: PDA

Pushdown Automaton (PDA): Formal Definition

Definition 2.1
PDA is a T-tuple: (Q,%,T',6,qy, Zy, F), where:
Q is a finite set of states
qo € Q is the start state
F C Q is the set of accepting states
Y is the alphabet
I' is the stack alphabet
Zy € I' is the initial stack symbol
d is the transition function

6:Qx X xT — Py, (Q x ') is the transition function

d(g,a,x) is a finite set of choices for when we are in state ¢, read a, and the top
of the stack is z: tells us which state to move to, and what stack alphabet
symbols to replace = with in the stack

/15

Defn: PDA

Example: Balanced Square Brackets

S—ells]]|ss

States () = {qO, qf} where g, is the start state and g is the only accepting state
»={[,1}
I' = {Z,, [} where Z, is the initial stack symbol
Transition function §:
Push in the stack when we see a [:
6(qos [,Zo) = {(QO’ZOD}
(g0, [, [) = {(q0, [)}

Pop from the stack when we see a], if possible:

5(‘]07]a D = {(QO7€>}

Accept the string if we reach the end of input and the stack has only Z:
5<QO7 g, ZO) = {(Qf) E)}

11/15

Defn: PDA

Example Diagram: Balanced Square Brackets

[,Z,— Z,!
[,[= [I[

1,[=«

€, 4y —¢
start —

Draw PDA for Balanced Square Brackets that does not accept ¢

There's another way to define PDA Acceptance: PDA accepts if it ends in empty
stack (regardless of state). See Chapter 6.2 of ALC to see its equivalence with our
accepting state definition.

12/15

Defn: PDA

Example: Even Palindromes

S — e|asSa|bsb

States () = {qo, q, qf} where g is the start state and ¢ is the only accepting state
¥ ={a,b}
' ={Z,,a,b} where Z, is the initial stack symbol
Transition function §:
Stack Push:
For all ¢; € {a,b} and ¢, € {a,b, Z,}: §(qy,c1,¢0) = {(qo, cac1)}
Spontaneously move to state ¢, to start popping:
For all c € {a,b, Z,}: d(qy,e,¢) ={(¢y,¢)}
Stack Pop:
For all c € {a,b}: (g, ¢c,c) ={(qy,¢)}
Accept the string if we reach the end of input and the stack has only Z:
d(qy,¢, ZO) = {(qf7 E)}

Construct PDA and draw diagram for all Palindromes

13/15

Like Automata Trinity, we have another equivalence:

Theorem 3.1
A language is context-free if and only if it is recognized by a pushdown automaton. J

Lo LR

14/15

CFG to PDA

Converting CFG to a PDA

Consider a CFG G = (V, T, P, S). Construct a PDA M as follows:
States () = {qo, qf} where g, is the start state and ¢ is the only accepting state
=T
=V UTU{Z,} where Z, is the initial stack symbol
Transition function §:
For each variable A € V,
3(qg, €, A) = {(qy, @) | for each production rule A — a of P}
For each terminal ¢ € T,
6(qo, aa) = {(qo,€)}
For when the stack is empty (except for Z;;) and input is fully read,
6(qo-€, Zo) = {<Qf»5)}
Prove that the above PDA M accepts the same language as the CFG G.

15/15

	Recap
	Defn: PDA
	CFG = PDA
	CFG to PDA

