
CS304: Automata and Formal Languages
Lec 17

PDA = CFG

Rachit Nimavat

September 16, 2025

1 / 15

Outline

1 Recap

2 Defn: PDA

3 CFG = PDA

4 CFG to PDA

2 / 15

Recap

Defn: CFG
A CFG is a set of recursive rules used to generate patterns of strings. Think of it as a
blueprint for a language.
Definition 1.1
A Context-Free Grammar is a 4-tuple 𝐺 = (𝑉 , 𝑇 , 𝑃 , 𝑆), where:

V: Finite set of variables. think: syntactic categories or placeholders. (e.g., 𝑆, 𝐸, 𝑇
in previous examples)
T: Finite set of terminals or tokens. actual symbols or words of the language. (e.g.,
a,b,c,+,* in previous examples)
P: Finite set of production rules. Rules have the form 𝐴 → 𝛼, where 𝐴 ∈ 𝑉 and
𝛼 ∈ (𝑉 ∪ 𝑇)∗, i.e., 𝛼 is a string consisting of variables and terminals. specifies how to
replace variables with strings of variables and terminals. (e.g., 𝑆 → a𝑆b and 𝐸 → 𝑇) in
previous examples
S: The start symbol (𝑆 ∈ 𝑉).

3 / 15

Recap

Visualizing Derivations: Parse Trees
Similar to DFA, wer have Parse Trees to visualize derivation in CFGs.
Consider 𝐿 = {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 0} over Σ = {𝑎, 𝑏} and CFG 𝑆 → 𝜀 | a𝑆b.

Parse tree for 𝜀:
𝑆

𝜀

The parse tree for 𝑎𝑎𝑏𝑏:
𝑆

𝑎 𝑆

𝑎 𝑆

𝜀

𝑏

𝑏

Parse tree for 𝑎𝑏:
𝑆

𝑎 𝑆

𝜀

𝑏

4 / 15

Recap

Simplifying CFGs
Useless Productions and Symbols

Standardize CFGs! This makes grammars easier to work with, both for humans and for
algorithms

Non-Generating Symbols. A variable A is non-generating if it can never derive a
string of only terminals. It’s a dead end.
Unreachable Symbols. A variable A is unreachable if there is no derivation from
the start variable S that uses A.

5 / 15

Recap

Chomsky Normal Form (CNF)

Goal: Convert any CFG to a standard form without changing its language.

Definition 1.2
A CFG in CNF has production rules of the form:

𝐴 → 𝐵𝐶 Variable yields two variables. Note 𝐵 or 𝐶 might be equal or equal to 𝐴.
𝐴 → 𝑎 Variable yields a single terminal.
Does not have any useless symbols.
The empty string 𝜀 is not allowed. If 𝜀 ∈ 𝐿, add a special rule 𝑆 → 𝜀.

Benefits:
Clean and Standard grammar
No messy edge-cases, only two types of rules
Great for theoretical analysis and writing algorithms

6 / 15

Recap

CFG to CNF Example

Balanced parenthesis: 𝑆 → ()|(S)|SS

On Board!

7 / 15

Recap

Equivalent of a DFA for CFGs?
Benefits of Hindsight

Consider a CFG S → ()|(S)|SS of the language 𝐿 of balanced parentheses.
How to build a machine that accepts 𝐿?

Returns true if w is in the language L
def recognize(w):

stack = []
for c in w:

if c == '(': stack.append(c)
elif c == ')':

if not len(stack): return False
stack.pop()

return not len(stack)

8 / 15

Recap

Stripping the Syntax

Read-only, one-way input (just like an NFA)
Finite states: While no explicit state variable, we go in “reject state” once the stack
is empty
The stack: New component!
Transition rules: What to do based on the current input symbol and the top of the
stack

This machine (NFA + stack) is a Pushdown Automaton (PDA)!

9 / 15

Defn: PDA

Pushdown Automaton (PDA): Formal Definition

Definition 2.1
PDA is a 7-tuple: (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹), where:

𝑄 is a finite set of states
𝑞0 ∈ 𝑄 is the start state
𝐹 ⊆ 𝑄 is the set of accepting states
Σ is the alphabet
Γ is the stack alphabet
𝑍0 ∈ Γ is the initial stack symbol
𝛿 is the transition function

𝛿 ∶ 𝑄 × Σ × Γ → 𝒫𝑓𝑖𝑛(𝑄 × Γ∗) is the transition function
𝛿(𝑞, 𝑎, 𝑥) is a finite set of choices for when we are in state 𝑞, read 𝑎, and the top
of the stack is 𝑥: tells us which state to move to, and what stack alphabet
symbols to replace 𝑥 with in the stack

10 / 15

Defn: PDA

Example: Balanced Square Brackets

S → 𝜀|[S]|SS

States 𝑄 = {𝑞0, 𝑞𝑓} where 𝑞0 is the start state and 𝑞𝑓 is the only accepting state
Σ = {[,]}
Γ = {𝑍0,[} where 𝑍0 is the initial stack symbol
Transition function 𝛿:

Push in the stack when we see a [:
𝛿(𝑞0,[, 𝑍0) = {(𝑞0, 𝑍0[)}
𝛿(𝑞0,[,[) = {(𝑞0,[[)}

Pop from the stack when we see a], if possible:
𝛿(𝑞0,],[) = {(𝑞0, 𝜀)}

Accept the string if we reach the end of input and the stack has only 𝑍0:
𝛿(𝑞0, 𝜀, 𝑍0) = {(𝑞𝑓 , 𝜀)}

11 / 15

Defn: PDA

Example Diagram: Balanced Square Brackets

𝑞0start 𝑞𝑓

[, 𝑍0 → 𝑍0[
[,[→ [[
],[→ 𝜀

𝜀, 𝑍0 → 𝜀

HW: Draw PDA for Balanced Square Brackets that does not accept 𝜀
HW: There’s another way to define PDA Acceptance: PDA accepts if it ends in empty
stack (regardless of state). See Chapter 6.2 of ALC to see its equivalence with our
accepting state definition.

12 / 15

Defn: PDA

Example: Even Palindromes

S → 𝜀|aSa|bSb
States 𝑄 = {𝑞0, 𝑞1, 𝑞𝑓} where 𝑞0 is the start state and 𝑞𝑓 is the only accepting state
Σ = {a,b}
Γ = {𝑍0,a,b} where 𝑍0 is the initial stack symbol
Transition function 𝛿:

Stack Push:
For all 𝑐1 ∈ {a,b} and 𝑐2 ∈ {a,b, 𝑍0}: 𝛿(𝑞0, 𝑐1, 𝑐2) = {(𝑞0, 𝑐2𝑐1)}

Spontaneously move to state 𝑞1 to start popping:
For all 𝑐 ∈ {a,b, 𝑍0}: 𝛿(𝑞0, 𝜀, 𝑐) = {(𝑞1, 𝑐)}

Stack Pop:
For all 𝑐 ∈ {a,b}: 𝛿(𝑞1, 𝑐, 𝑐) = {(𝑞1, 𝜀)}

Accept the string if we reach the end of input and the stack has only 𝑍0:
𝛿(𝑞1, 𝜀, 𝑍0) = {(𝑞𝑓 , 𝜀)}

HW: Construct PDA and draw diagram for all Palindromes
13 / 15

CFG = PDA

Like Automata Trinity, we have another equivalence:

Theorem 3.1
A language is context-free if and only if it is recognized by a pushdown automaton.

14 / 15

CFG to PDA

Converting CFG to a PDA
Consider a CFG 𝐺 = (𝑉 , 𝑇 , 𝑃 , 𝑆). Construct a PDA 𝑀 as follows:

States 𝑄 = {𝑞0, 𝑞𝑓} where 𝑞0 is the start state and 𝑞𝑓 is the only accepting state
Σ = 𝑇
Γ = 𝑉 ∪ 𝑇 ∪ {𝑍0} where 𝑍0 is the initial stack symbol
Transition function 𝛿:

For each variable 𝐴 ∈ 𝑉 ,
𝛿(𝑞0, 𝜀, 𝐴) = {(𝑞0, 𝛼) | for each production rule 𝐴 → 𝛼 of 𝑃}

For each terminal 𝑎 ∈ 𝑇 ,
𝛿(𝑞0, 𝑎, 𝑎) = {(𝑞0, 𝜀)}

For when the stack is empty (except for 𝑍0) and input is fully read,
𝛿(𝑞0, 𝜀, 𝑍0) = {(𝑞𝑓 , 𝜀)}

HW: Prove that the above PDA 𝑀 accepts the same language as the CFG 𝐺.
15 / 15

	Recap
	Defn: PDA
	CFG = PDA
	CFG to PDA

