Rachit Nimavat

September 19, 2025

1/14

Outline

@ Recap

© CFG = PDA
© CFG to PDA

@ Deterministic PDA (DPDA)

2/14

Recap

Defn: CFG

A CFG is a set of recursive rules used to generate patterns of strings. Think of it as a
blueprint for a language.

Definition 1.1
A Context-Free Grammar is a 4-tuple G = (V,T, P, S), where:

V: Finite set of variables. think: syntactic categories or placeholders. (e.g., S, E, T
in previous examples)

T: Finite set of terminals or tokens. actual symbols or words of the language. (e.g.,

a, b, c,+,* in previous examples)

P: Finite set of production rules. Rules have the form A — «, where A € V' and

a € (VUT)*, ie., «is a string consisting of variables and terminals. specifies how to
replace variables with strings of variables and terminals. (e.g., S — aSb and E — T') in

previous examples

S: The start symbol (S € V).

3/14

Recap

Pushdown Automaton (PDA): Formal Definition

Definition 1.2
PDA is a T-tuple: (Q,%,T',6,qy, Zy, F), where:
Q is a finite set of states
qo € Q is the start state
F C Q is the set of accepting states
Y is the alphabet
I' is the stack alphabet
Zy € I' is the initial stack symbol
d is the transition function

6:Qx X xT — Py, (Q x ') is the transition function

d(g,a,x) is a finite set of choices for when we are in state ¢, read a, and the top
of the stack is z: tells us which state to move to, and what stack alphabet
symbols to replace = with in the stack

/14

Recap

Example: Balanced Square Brackets

S—ells]]|ss

States () = {qO, qf} where g, is the start state and g is the only accepting state
»={[,1}
I' = {Z,, [} where Z, is the initial stack symbol
Transition function §:
Push in the stack when we see a [:
6(qos [,Zo) = {(QO’ZOD}
(g0, [, [) = {(q0, [)}

Pop from the stack when we see a], if possible:

5(‘]07]a D = {(QO7€>}

Accept the string if we reach the end of input and the stack has only Z:
5<QO7 g, ZO) = {(Qf) E)}

5/14

Recap

Example Diagram: Balanced Square Brackets

[,Z, — Z,
[,[= [

1,[=«

€,4y —¢€
start —

There's another way to define PDA Acceptance: PDA accepts if it ends in empty
stack (regardless of state). See Chapter 6.2 of ALC to see its equivalence with our
accepting state definition.

6/14

Like Automata Trinity, we have another equivalence:

Theorem 2.1
A language is context-free if and only if it is recognized by a pushdown automaton.

Lo LR

7/14

CFG to PDA

Converting CFG to a PDA

Consider a CFG G = (V, T, P, S). Construct a PDA M as follows:
States () = {qo, qf} where g, is the start state and ¢ is the only accepting state
=T
=V UTU{Z,} where Z, is the initial stack symbol
Transition function §:
For each variable A € V,
3(qg, €, A) = {(qy, @) | for each production rule A — a of P}
For each terminal ¢ € T,
6(qo, aa) = {(qo,€)}
For when the stack is empty (except for Z;;) and input is fully read,
6(qo-€, Zo) = {<Qf»5)}
Prove that the above PDA M accepts the same language as the CFG G.

8/14

CFG to PDA

Converting PDA to a CFG

Idea: Each variable in the CFG represents a journey for the PDA.
Before proceeding, normalize the PDA:
Ensure PDA accepts by empty stack
Push or Pop only:
Pop exactly one symbol from the stack
Push exactly one symbol onto the stack (on top of the one it just read)
For each pair of states p,q € @Q in the PDA and each stack-symbol A € I', we create
a variable [p, A, ¢ in the CFG.
[p, A, q| represents the journey with a contract: "l promise that the string | generate
will take the PDA from state p to state ¢, and the stack will be exactly as it started,
except that the symbol A which was on top has been removed.”

9/14

CFG to PDA

Converting PDA to a CFG: continued

G = (V,T,P,S), where,
V={p,AdqlpqgeQ AcT}
T=X
S = [q07Z07qf]

Production rules P:
1 Pop Transition: For each transition of the form (¢,e) € d(p,a, X) add a rule:

[p, X, q] = a
2 Push Transition: For each transition of the form (¢, XY') € (p, a, X):

for each ry, 7, € Q, add a rule: [p, X, 7] — alq, Y, r{][ry, X, ry]

10/14

CFG to PDA

PDA to CFG Example: Balanced Angular Brackets

<,Zy — Zy<
<<= K
> < e

€, 4y —¢€
start >
G = (V,T,P,S), where,

V= {[QOvzmqf]? [QOv <7Q0]}v T = {<7 >}' S = [q07Z07qf]' P
1. Pop Transition: [gy, <,qy] — > (90> Zo>] — €
2. Push Transition:
[q(]a <7 QO] —< [QO7 <7 qO][QO? <7 QO]
90+ Zos 5] =< [0, <5 90 [90: Z0> 5]

11/14

CFG to PDA

PDA to CFG Example: Balanced Angular Brackets

continued

<,Zy — Zy<
<, < — <L
> < —e

€,4y —¢€
start -
G = (V,T,P,S), where,

V={S A}, T={<,>}, P:
1. Pop Transition: A —>S — ¢
2. Push Transition: A — <AA S — <AS

12/14

Deterministic PDA (DPDA)

Deterministic PDA (DPDA)

PDA, but with deterministic transitions: PDA (with state acceptance) that is not allowed

to have a choice. !

Regular languages are recognized by DPDAs. Every regular language has a DFA,
and that is trivially a DPDA that does not use its stack.

Is DPDA with empty-stack acceptance equivalent to DPDA with state
acceptance? No! Can't even recognize the language 0*.

Is DPDA with empty-stack acceptance a strict subset of regular languages?
No! Can recognize 0"1™.

Can DPDA accept languages with ambiguous CFGs? No!? That's really good!
If you design a DPDA, you know the grammar is unambiguous. Great for
programming languages!

1See, Chapter 6.4 of ALC for defn.

2See, Thm 6.21 of ALC for proof.
13/14

Deterministic PDA (DPDA)

Venn Diagram of Known (so far) Families of Languages

14/14

	Recap
	CFG = PDA
	CFG to PDA
	Deterministic PDA (DPDA)

