
CS304: Automata and Formal Languages
Lec 18

PDA = CFG and Deterministic PDA

Rachit Nimavat

September 19, 2025

1 / 14

Outline

1 Recap

2 CFG = PDA

3 CFG to PDA

4 Deterministic PDA (DPDA)

2 / 14

Recap

Defn: CFG
A CFG is a set of recursive rules used to generate patterns of strings. Think of it as a
blueprint for a language.
Definition 1.1
A Context-Free Grammar is a 4-tuple 𝐺 = (𝑉 , 𝑇 , 𝑃 , 𝑆), where:

V: Finite set of variables. think: syntactic categories or placeholders. (e.g., 𝑆, 𝐸, 𝑇
in previous examples)
T: Finite set of terminals or tokens. actual symbols or words of the language. (e.g.,
a,b,c,+,* in previous examples)
P: Finite set of production rules. Rules have the form 𝐴 → 𝛼, where 𝐴 ∈ 𝑉 and
𝛼 ∈ (𝑉 ∪ 𝑇)∗, i.e., 𝛼 is a string consisting of variables and terminals. specifies how to
replace variables with strings of variables and terminals. (e.g., 𝑆 → a𝑆b and 𝐸 → 𝑇) in
previous examples
S: The start symbol (𝑆 ∈ 𝑉).

3 / 14

Recap

Pushdown Automaton (PDA): Formal Definition

Definition 1.2
PDA is a 7-tuple: (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹), where:

𝑄 is a finite set of states
𝑞0 ∈ 𝑄 is the start state
𝐹 ⊆ 𝑄 is the set of accepting states
Σ is the alphabet
Γ is the stack alphabet
𝑍0 ∈ Γ is the initial stack symbol
𝛿 is the transition function

𝛿 ∶ 𝑄 × Σ × Γ → 𝒫𝑓𝑖𝑛(𝑄 × Γ∗) is the transition function
𝛿(𝑞, 𝑎, 𝑥) is a finite set of choices for when we are in state 𝑞, read 𝑎, and the top
of the stack is 𝑥: tells us which state to move to, and what stack alphabet
symbols to replace 𝑥 with in the stack

4 / 14

Recap

Example: Balanced Square Brackets

S → 𝜀|[S]|SS

States 𝑄 = {𝑞0, 𝑞𝑓} where 𝑞0 is the start state and 𝑞𝑓 is the only accepting state
Σ = {[,]}
Γ = {𝑍0,[} where 𝑍0 is the initial stack symbol
Transition function 𝛿:

Push in the stack when we see a [:
𝛿(𝑞0,[, 𝑍0) = {(𝑞0, 𝑍0[)}
𝛿(𝑞0,[,[) = {(𝑞0,[[)}

Pop from the stack when we see a], if possible:
𝛿(𝑞0,],[) = {(𝑞0, 𝜀)}

Accept the string if we reach the end of input and the stack has only 𝑍0:
𝛿(𝑞0, 𝜀, 𝑍0) = {(𝑞𝑓 , 𝜀)}

5 / 14

Recap

Example Diagram: Balanced Square Brackets

𝑞0start 𝑞𝑓

[, 𝑍0 → 𝑍0[
[,[→ [[
],[→ 𝜀

𝜀, 𝑍0 → 𝜀

HW: There’s another way to define PDA Acceptance: PDA accepts if it ends in empty
stack (regardless of state). See Chapter 6.2 of ALC to see its equivalence with our
accepting state definition.

6 / 14

CFG = PDA

‘

Like Automata Trinity, we have another equivalence:

Theorem 2.1
A language is context-free if and only if it is recognized by a pushdown automaton.

7 / 14

CFG to PDA

Converting CFG to a PDA
Consider a CFG 𝐺 = (𝑉 , 𝑇 , 𝑃 , 𝑆). Construct a PDA 𝑀 as follows:

States 𝑄 = {𝑞0, 𝑞𝑓} where 𝑞0 is the start state and 𝑞𝑓 is the only accepting state
Σ = 𝑇
Γ = 𝑉 ∪ 𝑇 ∪ {𝑍0} where 𝑍0 is the initial stack symbol
Transition function 𝛿:

For each variable 𝐴 ∈ 𝑉 ,
𝛿(𝑞0, 𝜀, 𝐴) = {(𝑞0, 𝛼) | for each production rule 𝐴 → 𝛼 of 𝑃}

For each terminal 𝑎 ∈ 𝑇 ,
𝛿(𝑞0, 𝑎, 𝑎) = {(𝑞0, 𝜀)}

For when the stack is empty (except for 𝑍0) and input is fully read,
𝛿(𝑞0, 𝜀, 𝑍0) = {(𝑞𝑓 , 𝜀)}

HW: Prove that the above PDA 𝑀 accepts the same language as the CFG 𝐺.
8 / 14

CFG to PDA

Converting PDA to a CFG

Idea: Each variable in the CFG represents a journey for the PDA.
Before proceeding, normalize the PDA:

Ensure PDA accepts by empty stack
Push or Pop only:

Pop exactly one symbol from the stack
Push exactly one symbol onto the stack (on top of the one it just read)

For each pair of states 𝑝, 𝑞 ∈ 𝑄 in the PDA and each stack-symbol 𝐴 ∈ Γ, we create
a variable [𝑝, 𝐴, 𝑞] in the CFG.
[𝑝, 𝐴, 𝑞] represents the journey with a contract: ”I promise that the string I generate
will take the PDA from state 𝑝 to state 𝑞, and the stack will be exactly as it started,
except that the symbol 𝐴 which was on top has been removed.”

9 / 14

CFG to PDA

Converting PDA to a CFG: continued

𝐺 = (𝑉 , 𝑇 , 𝑃 , 𝑆), where,
𝑉 = {[𝑝, 𝐴, 𝑞] | 𝑝, 𝑞 ∈ 𝑄, 𝐴 ∈ Γ}
𝑇 = Σ
𝑆 = [𝑞0, 𝑍0, 𝑞𝑓]
Production rules 𝑃 :

1 Pop Transition: For each transition of the form (𝑞, 𝜀) ∈ 𝛿(𝑝, 𝑎, 𝑋) add a rule:
[𝑝, 𝑋, 𝑞] → 𝑎

2 Push Transition: For each transition of the form (𝑞, 𝑋𝑌) ∈ 𝛿(𝑝, 𝑎, 𝑋):
for each 𝑟1, 𝑟2 ∈ 𝑄, add a rule: [𝑝, 𝑋, 𝑟2] → 𝑎[𝑞, 𝑌 , 𝑟1][𝑟1, 𝑋, 𝑟2]

Bonus: Resulting CFG is in CNF!

10 / 14

CFG to PDA

PDA to CFG Example: Balanced Angular Brackets

𝑞0start 𝑞𝑓

<, 𝑍0 → 𝑍0<
<,< → <<
>,< → 𝜀

𝜀, 𝑍0 → 𝜀

𝐺 = (𝑉 , 𝑇 , 𝑃 , 𝑆), where,
𝑉 = {[𝑞0, 𝑍0, 𝑞𝑓], [𝑞0, <, 𝑞0]}, 𝑇 = {<,>}, 𝑆 = [𝑞0, 𝑍0, 𝑞𝑓], 𝑃 :

1. Pop Transition: [𝑞0, <, 𝑞0] → > [𝑞0, 𝑍0, 𝑞𝑓] → 𝜀
2. Push Transition:

[𝑞0, <, 𝑞0] →< [𝑞0, <, 𝑞0][𝑞0, <, 𝑞0]
[𝑞0, 𝑍0, 𝑞𝑓] →< [𝑞0, <, 𝑞0][𝑞0, 𝑍0, 𝑞𝑓]

Think: 𝑆 == [𝑞0, 𝑍0, 𝑞𝑓] and 𝐴 == [𝑞0, <, 𝑞0].
11 / 14

CFG to PDA

PDA to CFG Example: Balanced Angular Brackets
continued

𝑞0start 𝑞𝑓

<, 𝑍0 → 𝑍0<
<,< → <<
>,< → 𝜀

𝜀, 𝑍0 → 𝜀

𝐺 = (𝑉 , 𝑇 , 𝑃 , 𝑆), where,
𝑉 = {𝑆, 𝐴}, 𝑇 = {<,>}, 𝑃 :

1. Pop Transition: A → > S → 𝜀
2. Push Transition: A → <AA S → <AS

Simply, S → 𝜀 | <AS and A →>|<AA.
12 / 14

Deterministic PDA (DPDA)

Deterministic PDA (DPDA)

PDA, but with deterministic transitions: PDA (with state acceptance) that is not allowed
to have a choice. 1

Regular languages are recognized by DPDAs. Every regular language has a DFA,
and that is trivially a DPDA that does not use its stack.
Is DPDA with empty-stack acceptance equivalent to DPDA with state
acceptance? No! Can’t even recognize the language 0∗.
Is DPDA with empty-stack acceptance a strict subset of regular languages?
No! Can recognize 0𝑛1𝑛.
Can DPDA accept languages with ambiguous CFGs? No!2 That’s really good!
If you design a DPDA, you know the grammar is unambiguous. Great for
programming languages!

1See, Chapter 6.4 of ALC for defn.
2See, Thm 6.21 of ALC for proof.

13 / 14

Deterministic PDA (DPDA)

Venn Diagram of Known (so far) Families of Languages

On Board!

14 / 14

	Recap
	CFG = PDA
	CFG to PDA
	Deterministic PDA (DPDA)

