CS304: Automata and Formal Languages

Lec 19

Pumping Lemma for CFLs

Rachit Nimavat

October 3, 2025

Outline

- Recap
- 2 Pumping Lemma: Examples
- Closure Properties

Defn: CFG

A CFG is a set of recursive rules used to generate patterns of strings. Think of it as a blueprint for a language.

Definition 1.1

A Context-Free Grammar is a 4-tuple G = (V, T, P, S), where:

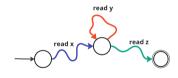
V: Finite set of variables. think: syntactic categories or placeholders. (e.g., S, E, T in previous examples)

T: Finite set of **terminals** or **tokens**. actual symbols or words of the language. (e.g., a, b, c, +, * in previous examples)

P: Finite set of **production rules**. Rules have the form $A \to \alpha$, where $A \in V$ and $\alpha \in (V \cup T)^*$, i.e., α is a string consisting of variables and terminals. specifies how to replace variables with strings of variables and terminals. (e.g., $S \to aSb$ and $E \to T$) in previous examples

S: The start symbol $(S \in V)$.

Pumping Lemma for Regular Languages



Lemma 1.2

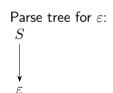
For each regular language L, there is a constant p (the pumping length) such that any string $s \in L$ with $|s| \geq p$ can be divided into three parts, s = xyz, such that

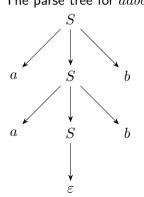
- i. |y| > 0 ("looped-string" y is not empty)
- ii. $|xy| \le p$ (the loop starts within the first p characters)
- iii. $\forall i \geq 0$, the string $xy^iz \in L$ (we can pump the loop zero, one, or many times, and the resulting string must still be accepted)

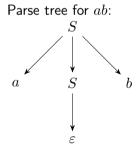
Visualizing CFG Derivations: Parse Trees

Similar to DFA, wer have **Parse Trees** to visualize derivation in CFGs. Consider $L = \{a^nb^n \mid n \geq 0\}$ over $\Sigma = \{a,b\}$ and CFG $S \rightarrow \varepsilon \mid aSb$.

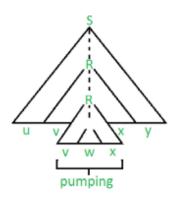
The parse tree for aabb:







Pumping Lemma for CFLs



Lemma 1.3

For each CFL L, there is a constant p (the pumping length) such that any string $s \in L$ with $|s| \ge p$ can be divided into five parts, s = uvwxy, such that

- i. |vx| > 0 (at least 1 of v and x is not empty)
- ii. $|vwx| \le p$ (middle portion is not too long)
- iii. $\forall i \geq 0$, the string $uv^iwx^iy \in L$ (we can pump v and x, one, or many times, and the resulting string is still in L)

How to use Pumping Lemma?

Goal: Prove that a language L is <u>not a CFL</u>. Assume that L is a CFL.

Pumping Lemma: Player-1

- 1. Provides 'pumping length' p
- 3. Provides a partition s = uvwxy such that |vx| > 0 and |vwx| < p

Us: Player-2

- 2. Cleverly choose $s \in L$ such that $|s| \ge p$
- 4. $\frac{\text{WIN}}{uv^iwx^i}$ by choosing $i \geq 0$ such that

If $uv^iwx^iy \notin L$, then we have a contradiction. Thus, our assumption that L is context-free must be false. Therefore, L is not a CFL.

Note: For this to work, we must have a <u>winning strategy</u> for each p and for each partition s = uvwxy (that satisfies |vx| > 0 and |vwx| < p).

How to use the Pumping Lemma?

Prove that $L = \{0^n 1^n 2^n \mid n \ge 0\}$ is not context-free

Assume for contradiction that L is context-free

From pumping lemma, there is a constant p with "looping property"

Let's pick a string $s = 0^p 1^p 2^p$. Notice that $s \in L$

Consider its decomposition s = uvwxy given by the pumping lemma

 $0 < |vx| \le |vwx| \le p$ implies at least one of $\{0, 1, 2\}$ is not in vwx (since vwx is of length at most p, it cannot cover all three segments of s)

Choose i=0. From pumping lemma, $s_0=uv^0wx^0y=uwy$, which has unequal number of 0s, 1s and 2s.

Contradiction!

How to use the Pumping Lemma?

Prove that $L = \{0^i 1^j 2^k \mid 0 \le i \le j \le k\}$ is not context-free

Assume for contradiction that L is context-free

From pumping lemma, there is a constant p with "looping property"

Let's pick a string $s=0^p1^p2^p$. Notice that $s\in L$

Consider its decomposition s = uvwxy given by the pumping lemma

 $0 < |vx| \le |vwx| \le p$ implies at least one of $\{0, 1, 2\}$ is not in vwx (since vwx is of length at most p, it cannot cover all three segments of s)

We need to do case-analysis based on which symbols are in vwx:

Case 1: vwx do not contain any 0. Pump down!

Case 2: vwx do not contain any 1 but there are 0s. Pump up!

Case 3: vwx do not contain any 1 but there are 2s. Pump down!

Case 4: vwx do not contain any 2. Pump up

In each case, we get a contradiction!

How to use the Pumping Lemma?

HW: Prove that $L = \{ww \mid w \in \{0,1\}^*\}$ is not context-free

Closure Properties

Closure Properties: A set is <u>closed</u> under an operation if applying that operation to its elements results in elements that are also in the set.

- CFLs are closed under union (create a new start symbol with $S\mapsto S_1\mid S_2$)
- CFLs are closed under concatenation (create a new start symbol with $S\mapsto S_1S_2)$
- If L is a CFL, so is L^* (add rule $S\mapsto SS\mid arepsilon$)
- Reversal of a CFL is context-free Reverse all production rules
- CFLs are closed under intersection NO! (Use $L_1=\{a^ib^ic^j\}$ and $L_2=\{a^jb^ic^i\}$)
- CFLs are closed under complementation NO! (Use DeMorgan's law)