
CS304: Automata and Formal Languages
Lec 20

Decision Properties for CFLs and Context-Sensitive Languages

Rachit Nimavat

October 6, 2025

1 / 10

Outline

1 Recap

2 Decision Properties

3 Context-Sensitive Languages

2 / 10

Recap

Pumping Lemma for CFLs

Lemma 1.1
For each CFL 𝐿, there is a constant 𝑝 (the pumping
length) such that any string 𝑠 ∈ 𝐿 with |𝑠| ≥ 𝑝 can be
divided into five parts, 𝑠 = 𝑢𝑣𝑤𝑥𝑦, such that

i. |𝑣𝑥| > 0 (at least 1 of 𝑣 and 𝑥 is not empty)
ii. |𝑣𝑤𝑥| ≤ 𝑝 (middle portion is not too long)
iii. ∀𝑖 ≥ 0, the string 𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿 (we can pump 𝑣 and

𝑥, one, or many times, and the resulting string is still
in 𝐿)

3 / 10

Recap

How to use Pumping Lemma?
Goal: Prove that a language 𝐿 is not a CFL.
Assume that 𝐿 is a CFL.

Pumping Lemma: Player-1

1. Provides ‘pumping length’ 𝑝
3. Provides a partition

𝑠 = 𝑢𝑣𝑤𝑥𝑦 such that |𝑣𝑥| > 0
and |𝑣𝑤𝑥| < 𝑝

Us: Player-2

2. Cleverly choose 𝑠 ∈ 𝐿 such that |𝑠| ≥ 𝑝
4. WIN by choosing 𝑖 ≥ 0 such that

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∉ 𝐿

If 𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∉ 𝐿, then we have a contradiction. Thus, our assumption that 𝐿 is
context-free must be false. Therefore, 𝐿 is not a CFL.
Note: For this to work, we must have a winning strategy for each 𝑝 and for each

partition 𝑠 = 𝑢𝑣𝑤𝑥𝑦 (that satisfies |𝑣𝑥| > 0 and |𝑣𝑤𝑥| < 𝑝).
4 / 10

Recap

How to use the Pumping Lemma?

Prove that 𝐿 = {0𝑛1𝑛2𝑛 | 𝑛 ≥ 0} is not context-free
Assume for contradiction that 𝐿 is context-free
From pumping lemma, there is a constant 𝑝 with ”looping property”
Let’s pick a string 𝑠 = 0𝑝1𝑝2𝑝. Notice that 𝑠 ∈ 𝐿
Consider its decomposition 𝑠 = 𝑢𝑣𝑤𝑥𝑦 given by the pumping lemma
0 < |𝑣𝑥| ≤ |𝑣𝑤𝑥| ≤ 𝑝 implies at least one of {0, 1, 2} is not in 𝑣𝑤𝑥 (since 𝑣𝑤𝑥 is of
length at most 𝑝, it cannot cover all three segments of 𝑠)
Choose 𝑖 = 0. From pumping lemma, 𝑠0 = 𝑢𝑣0𝑤𝑥0𝑦 = 𝑢𝑤𝑦, which has unequal
number of 0s, 1s and 2s.
Contradiction!

5 / 10

Recap

Closure Properties

Closure Properties: A set is closed under an operation if applying that operation to its
elements results in elements that are also in the set.

- CFLs are closed under union (create a new start symbol with 𝑆 ↦ 𝑆1 | 𝑆2)
- CFLs are closed under concatenation (create a new start symbol with 𝑆 ↦ 𝑆1𝑆2)
- If 𝐿 is a CFL, so is 𝐿∗ (add rule 𝑆 ↦ 𝑆𝑆 | 𝜀)
- Reversal of a CFL is context-free Reverse all production rules
- CFLs are closed under intersection NO! (Use 𝐿1 = {𝑎𝑖𝑏𝑖𝑐𝑗} and 𝐿2 = {𝑎𝑗𝑏𝑖𝑐𝑖})
- CFLs are closed under complementation NO! (Use DeMorgan’s law)

6 / 10

Decision Properties

Decision Properties of CFLs
Emptiness Problem: Given a CFG 𝐺, is 𝐿(𝐺) = ∅? Can determine if the start
symbol 𝑆 is generating (i.e., can derive some terminal string).
Finiteness Problem: Given a CFG 𝐺, is 𝐿(𝐺) finite? Can determine if there is a
cycle in the derivation from 𝑆 to some terminal string. (You’ll later learn graph
algorithms to do this efficiently.)
Membership Problem: Given a CFG 𝐺 and a string 𝑤, is 𝑤 ∈ 𝐿(𝐺)? Can be
solved by simulating the corresponding PDA with input 𝑤. There is an efficient
algorithm called the CYK algorithm that can solve this problem in 𝑂(𝑛3) time,
where 𝑛 is the length of the string 𝑤.
Equivalence Problem: Given two CFGs 𝐺1 and 𝐺2, is 𝐿(𝐺1) = 𝐿(𝐺2)? This
problem is undecidable, i.e., there is no algorithm that can solve this problem for all
possible inputs. In the later part of the course, we’ll learn how to even prove that a
problem has no algorithmic solution.
Ambiguity: Given a CFG 𝐺, is 𝐺 ambiguous? Undecidable!

7 / 10

Context-Sensitive Languages

Context-Sensitive Languages (CSLs)

In CFGs, the production rules are of the form 𝐴 → 𝛼, where 𝐴 is a single
non-terminal and 𝛼 is a string of terminals and/or non-terminals.
Relax this restriction and allow the left-hand side of a production rule to contain
multiple symbols? Context-Sensitive Grammars (CSGs)!
A CSG is same as CFG, except the production rules are of the form 𝛼𝐴𝛽 → 𝛼𝛾𝛽,
where 𝐴 is a non-terminal, 𝛼 and 𝛽 are strings of terminals and/or non-terminals
(the context), and 𝛾 is a non-empty string of terminals and/or non-terminals.
Essentially, says, ”Replace 𝐴 with 𝛾 only when it appears in the context of 𝛼 and 𝛽”.
Languages that have CSGs are called Context-Sensitive Languages (CSLs).

8 / 10

Context-Sensitive Languages

CSG: Alternative Definition

CSGs are non-contracting grammars:
All production rules are of the form 𝛼 → 𝛽, where 𝛼 and 𝛽 are strings of terminals
and/or non-terminals, and |𝛽| ≥ |𝛼|.
Except potentially the rule 𝑆 → 𝜖, where 𝑆 is the start symbol, and 𝑆 does not
appear on the right-hand side of any production rule.

9 / 10

Context-Sensitive Languages

CSG Example

Consider 𝐿 = {0𝑛1𝑛2𝑛 | 𝑛 ≥ 0} and its grammar:
S → aSBC | 𝜀
CB → BC
aB → ab
bB → bb
bC → bc
cC → cc

How it works? On board!

10 / 10

	Recap
	Decision Properties
	Context-Sensitive Languages

