Rachit Nimavat

October 6, 2025

1/10

Outline

@ Recap

© Decision Properties

© Context-Sensitive Languages

2/10

Recap

Pumping Lemma for CFLs

Lemma 1.1

For each CFL L, there is a constant p (the pumping
length) such that any string s € L with |s| > p can be
divided into five parts, s = uwvwxy, such that

i. lvx| >0 (at least 1 of v and x is not empty)

'
A
I
i
i
I

ii. |[vwz| < p (middle portion is not too long)

ii. Vi >0, the string uviwz'y € L (we can pump v and
x, one, or many times, and the resulting string is still
in L

pumping) V.

3/10

Recap

How to use Pumping Lemma?

Goal: Prove that a language L is not a CFL.
Assume that L is a CFL.

Pumping Lemma: Player-1 Us: Player-2

1. Provides ‘pumping length’ p

3. Provides a partition 2. Cleverly choose s € L such that |s| > p
s = wvwzy such that |vz| > 0 4. WIN by choosing i > 0 such that
and |vwz| < p wlwarly ¢ L

If uv'wxiy ¢ L, then we have a contradiction. Thus, our assumption that L is
context-free must be false. Therefore, L is not a CFL.

Note: For this to work, we must have a winning strategy for each p and for each
partition s = wvway (that satisfies |vx| > 0 and |vwz| < p).

4/10

Recap

How to use the Pumping Lemma?

Prove that L = {0"1"2" | n > 0} is not context-free
Assume for contradiction that L is context-free
From pumping lemma, there is a constant p with "looping property”
Let's pick a string s = 0P1P2P. Notice that s € L

Consider its decomposition s = uvwxy given by the pumping lemma

0 < |vz| < |[vwz| < p implies at least one of {0, 1,2} is not in vwz (since vwz is of
length at most p, it cannot cover all three segments of s)

0

Choose i = 0. From pumping lemma, s, = uv wx"y = uwy, which has unequal

number of Os, 1s and 2s.

Contradiction!

5/10

Recap

Closure Properties

A set is closed under an operation if applying that operation to its
elements results in elements that are also in the set.

- CFLs are closed under union (create a new start symbol with S+ 5,

5,)
- CFLs are closed under concatenation (create a new start symbol with S+ 5,5,)
If Lis a CFL, sois L* (add rule S+ 55 ¢)

Reversal of a CFL is context-free Reverse all production rules

CFLs are closed under intersection NO! (Use [, = {a'b'¢/} and L, = {a’b'c'})

CFLs are closed under complementation NO! (Use DeMorgan's law)

6/10

Decision Properties

Decision Properties of CFLs

Emptiness Problem: Given a CFG G, is L(G) = ()? Can determine if the start
symbol S is generating (i.e., can derive some terminal string).

Finiteness Problem: Given a CFG G, is L(G) finite? Can determine if there is a
cycle in the derivation from S to some terminal string. (You'll later learn graph
algorithms to do this efficiently.)

Membership Problem: Given a CFG G and a string w, is w € L(G)? Can be
solved by simulating the corresponding PDA with input w. There is an efficient
algorithm called the CYK algorithm that can solve this problem in O(n?) time,
where n is the length of the string w.

Equivalence Problem: Given two CFGs G and G, is L(G;) = L(G5)? This
problem is undecidable, i.e., there is no algorithm that can solve this problem for all
possible inputs. In the later part of the course, we'll learn how to even prove that a
problem has no algorithmic solution.

Ambiguity: Given a CFG G, is G ambiguous? Undecidable!

7/10

Context-Sensitive Languages

Context-Sensitive Languages (CSLs)

In CFGs, the production rules are of the form A — «, where A is a single
non-terminal and « is a string of terminals and/or non-terminals.

Relax this restriction and allow the left-hand side of a production rule to contain
multiple symbols? Context-Sensitive Grammars (CSGs)!

A CSG is same as CFG, except the production rules are of the form aAf — a0,
where A is a non-terminal, & and [are strings of terminals and/or non-terminals
(the context), and ~ is a non-empty string of terminals and/or non-terminals.

Essentially, says, "Replace A with v only when it appears in the context of « and 3"
Languages that have CSGs are called Context-Sensitive Languages (CSLs).

8/10

Context-Sensitive Languages

CSG: Alternative Definition

CSGs are non-contracting grammars:

All production rules are of the form o — (3, where o and 3 are strings of terminals
and/or non-terminals, and || > |«|.

Except potentially the rule S — €, where S is the start symbol, and S does not
appear on the right-hand side of any production rule.

9/10

Context-Sensitive Languages

CSG Example

Consider L = {0™1™2" | n > 0} and its grammar:
S — aSBC|e
CB — BC
aB — ab
bB — bb
bC — bc
cC—cc
How it works? On board!

10/10

	Recap
	Decision Properties
	Context-Sensitive Languages

