Rachit Nimavat

October 9, 2025

1/15

Outline

@ Turing Machines
© Definition

© Examples

2/15

Turing Machines

Turing Machines

So far...
Finite Automata are great for simple pattern matching, like checking for valid
identifiers or keywords. They have a finite memory (their states).
Pushdown Automata are more powerful. By adding a stack, they gain infinite
memory, allowing them to recognize context-free languages, like balanced
parentheses or palindromes.

Even PDAs have limits.
They can’t handle languages that require more complex memory like
L = {a"b"c" | n > 0}.
A single stack isn’t enough to handle this "double-matching” requirement. We need
a machine with unrestricted access to memory.

3/15

Turing Machines

Turing Machines

Conceived by Alan Turing in 1936
Can simulate any algorithmic process

A simple, abstract model of computation powerful enough
to capture the essence* of what it means to compute

Any problem that can be solved by any computer (no
matter how futuristic or how advanced*) can be solved by
a Turing Machine

Forms the basis for modern computing theory

4/15

Turing Machines

How does a human compute?

o Write input on a paper

@ Do the computation (think and write the intermediate results on
the paper)

@ Write output on the paper

5/15

Turing Machines

How did Turing formalize human computation?

o Turing = Named after Alan Mathison Turing

@ Machine = Computing machine

Human computation

Machine computation

Fr=—""wm

Tape

Tape head

Transition function

6/15

Turing Machines

Turing Machine: Informal Defn

Imagine a machine with a read/write head that can move along an infinitely long piece
of tape. This tape is divided into cells, each capable of holding a single symbol.
This simple model has three fundamental abilities:

Read the symbol on the tape cell under the head.

Write a new symbol to that cell, erasing what was there.

Move the head one cell to the left or one cell to the right. (Two-Way Head)
That's it! The machine's behavior is directed by a finite set of states, just like an Finite
Automaton.

7/15

Turing Machines

Diagram of a Turing machine (TM)

[olefrle]=T]

Read /write head
(moves in both directions)

0]

o7 | Finite control

a3
']

Source: Lewis and Papadimitriou. Elements of the Theory of Computation.

| Concept Meaning \
Tape Simulates unlimited sheets of paper for computation.
Tape head Read/write onto a tape cell. Moves left/right.
States Simulates states of a human mind.
Input Finite number of symbols initially on the tape.
Output Finite number of symbols finally on the tape.
Computation | State transitions based on rules and input symbols.

8/15

Turing Machines

First Example

Consider the language L = {a™b"c™ | n > 0}.
A string w is given on the tape, and the head starts at the leftmost symbol of w.
Infinitely many blank symbols (denoted by [J) follow w.

Turing Machine naturally mimics our intuition for algorithms:

1. Scan right until first O] to check whether w is of the form a*b*c*. If not, reject.

Return head to the leftmost symbol.

Scan right, crossing off single a, b, and ¢ (replace them with x) in each pass.

If all symbols are crossed off, accept.

If a symbol is missing, reject.

ok wnN

Go to step 2.

9/15

Definition

What is a Turing machine (TM)?

Definition
A Turing machine (TM) M is a 6-tuple
M= (Q,%,T,0,q0, H), where,
1. @: A finite set (set of states).
2. X A finite set (input alphabet). ¥ excludes >, [0, +, —.
3. T": A finite set (tape alphabet).
YU {p,0} CT. T excludes <, —.
4. §:(Q—H)xT toQx(I'U{<,—1}) is the transition function
such that the tape head never falls off or erases > symbol
> Time (computation)

(€]

. qo: The start state (belongs to Q).
. H = {qacc, Grej}: The set of halting states (subset of Q).

[e)}

10/15

Definition

Some notes on the Turing machine

Symbols

@ > : Left end symbol

e []: Blank symbol

@ . — : Left and right movement symbols

@ ¥ : Represents input/output/special symbols

o ' : Represents symbols that can be present on the tape

Transition
@ M never falls off the left end of the tape i.e.,

when the current symbol is >, the tape head has to move right
@ M stops when it reaches an accept or a reject state i.e.,

d is not defined for states in H

11/15

Definition

Language of TM

Language of a TM M, denoted L(M), is the set of strings that M accepts
That is, for each string w € L(M), M halts in the accept state when started with w

on its tape
A language L is called Recursively Enumerable (RE) (not to be confused with
Regular Expressions) if there exists a TM M such that L = L(M)

12/15

Examples

Construct TM to erase the input string

Problem

@ Construct a TM to erase the input string

Solution

o Language recognizers such as DFA's cannot perform computa-
tional tasks such as erasing strings.
So, no DFA can be used for erasing strings.

@ Language generators such as CFG's cannot perform computa-
tional tasks such as erasing strings.
So, no CFG can be used for erasing strings.

@ TM'’s are more powerful than language recognizers and lan-
guage generators.
A TM can be used for erasing strings.

13/15

Examples

Construct TM to erase the input string

Problem

o Construct a TM to erase the input string

Solution (continued)

(a,a), (0, —)
Current symbol (T")
Current state (Q — H) > a O
Q) (q0,—) | (q1.8) | (an,0)
@ - (90,@) | (g0,—)

14/15

Examples

Construct TM to erase the input string

Problem

@ Construct a TM to erase the input string

Solution (continued)

Time | State Tape

0 qo >lallalal|ll
1 Qo >laf|a]a|O
2 q > 0Ofa]la|O
3 Qo >(0fa]a|UO
4 q1 > 0|0 a|O
5 q0 > 0|0 e | O
6 Q1 > O|0|10)|0
7 q0 > O|10|10)10
8 e |>|O|O0|O|O

15/15

	Turing Machines
	Definition
	Examples

