
CS304: Automata and Formal Languages
Lec 21

Turing Machines

Rachit Nimavat

October 9, 2025

1 / 15



Outline

1 Turing Machines

2 Definition

3 Examples

2 / 15



Turing Machines

Turing Machines

So far...
Finite Automata are great for simple pattern matching, like checking for valid
identifiers or keywords. They have a finite memory (their states).
Pushdown Automata are more powerful. By adding a stack, they gain infinite
memory, allowing them to recognize context-free languages, like balanced
parentheses or palindromes.

Even PDAs have limits.
They can’t handle languages that require more complex memory like
𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 0}.
A single stack isn’t enough to handle this ”double-matching” requirement. We need
a machine with unrestricted access to memory.

3 / 15



Turing Machines

Turing Machines

Conceived by Alan Turing in 1936
Can simulate any algorithmic process
A simple, abstract model of computation powerful enough
to capture the essence* of what it means to compute
Any problem that can be solved by any computer (no
matter how futuristic or how advanced*) can be solved by
a Turing Machine
Forms the basis for modern computing theory

4 / 15



Turing Machines

How does a human compute?

Write input on a paper
Do the computation (think and write the intermediate results on
the paper)
Write output on the paper

5 / 15



Turing Machines

How did Turing formalize human computation?

Turing = Named after Alan Mathison Turing
Machine = Computing machine

Human computation Machine computation

Tape

Tape head

Transition function

6 / 15



Turing Machines

Turing Machine: Informal Defn

Imagine a machine with a read/write head that can move along an infinitely long piece
of tape. This tape is divided into cells, each capable of holding a single symbol.
This simple model has three fundamental abilities:

Read the symbol on the tape cell under the head.
Write a new symbol to that cell, erasing what was there.
Move the head one cell to the left or one cell to the right. (Two-Way Head)

That’s it! The machine’s behavior is directed by a finite set of states, just like an Finite
Automaton.

7 / 15



Turing Machines

Diagram of a Turing machine (TM)

Source: Lewis and Papadimitriou. Elements of the Theory of Computation.

Concept Meaning
Tape Simulates unlimited sheets of paper for computation.
Tape head Read/write onto a tape cell. Moves left/right.
States Simulates states of a human mind.
Input Finite number of symbols initially on the tape.
Output Finite number of symbols finally on the tape.
Computation State transitions based on rules and input symbols.

8 / 15



Turing Machines

First Example

Consider the language 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 0}.
A string 𝑤 is given on the tape, and the head starts at the leftmost symbol of 𝑤.
Infinitely many blank symbols (denoted by □) follow 𝑤.

Turing Machine naturally mimics our intuition for algorithms:
1. Scan right until first □ to check whether 𝑤 is of the form 𝑎∗𝑏∗𝑐∗. If not, reject.
2. Return head to the leftmost symbol.
3. Scan right, crossing off single 𝑎, 𝑏, and 𝑐 (replace them with ×) in each pass.
4. If all symbols are crossed off, accept.
5. If a symbol is missing, reject.
6. Go to step 2.

9 / 15



Definition

What is a Turing machine (TM)?

Definition
A Turing machine (TM) M is a 6-tuple
M = (Q,Σ,Γ, δ, q0, H), where,
1. Q: A finite set (set of states).
2. Σ: A finite set (input alphabet). Σ excludes .,�,←,→.
3. Γ: A finite set (tape alphabet).

Σ ∪ {.,�} ⊆ Γ. Γ excludes ←,→.
4. δ : (Q−H)×Γ to Q×(Γ∪{←,→}) is the transition function

such that the tape head never falls off or erases . symbol
B Time (computation)

5. q0: The start state (belongs to Q).
6. H = {qacc, qrej}: The set of halting states (subset of Q).

10 / 15



Definition

Some notes on the Turing machine

Symbols
. : Left end symbol
� : Blank symbol
←,→ : Left and right movement symbols
Σ : Represents input/output/special symbols
Γ : Represents symbols that can be present on the tape

Transition
M never falls off the left end of the tape i.e.,
when the current symbol is ., the tape head has to move right
M stops when it reaches an accept or a reject state i.e.,
δ is not defined for states in H

11 / 15



Definition

Language of TM

Language of a TM 𝑀 , denoted 𝐿(𝑀), is the set of strings that 𝑀 accepts
That is, for each string 𝑤 ∈ 𝐿(𝑀), 𝑀 halts in the accept state when started with 𝑤
on its tape
A language 𝐿 is called Recursively Enumerable (RE) (not to be confused with
Regular Expressions) if there exists a TM 𝑀 such that 𝐿 = 𝐿(𝑀)

12 / 15



Examples

Construct TM to erase the input string

Problem
Construct a TM to erase the input string

Solution
Language recognizers such as DFA’s cannot perform computa-
tional tasks such as erasing strings.
So, no DFA can be used for erasing strings.
Language generators such as CFG’s cannot perform computa-
tional tasks such as erasing strings.
So, no CFG can be used for erasing strings.
TM’s are more powerful than language recognizers and lan-
guage generators.
A TM can be used for erasing strings.

13 / 15



Examples

Construct TM to erase the input string

Problem
Construct a TM to erase the input string

Solution (continued)

q0 q1 qh

(a,�)
(�,�)

(a, a), (�,→)

(.,→)

Current symbol (Γ)
Current state (Q−H) . a �

q0 (q0,→) (q1,�) (qh,�)
q1 − (q0, a) (q0,→)

14 / 15



Examples

Construct TM to erase the input string

Problem
Construct a TM to erase the input string

Solution (continued)

Time State Tape
0 q0 . a a a � · · ·
1 q0 . a a a � · · ·
2 q1 . � a a � · · ·
3 q0 . � a a � · · ·
4 q1 . � � a � · · ·
5 q0 . � � a � · · ·
6 q1 . � � � � · · ·
7 q0 . � � � � · · ·
8 qh . � � � � · · ·

15 / 15


	Turing Machines
	Definition
	Examples

