
CS304: Automata and Formal Languages
Lec 22

Turing Machines: Continued

Rachit Nimavat

October 10, 2025

1 / 23

Outline

1 Recap

2 TM: More Examples

3 Scope of this Course

2 / 23

Recap

Turing Machine: Informal Defn

Imagine a machine with a read/write head that can move along an infinitely long piece
of tape. This tape is divided into cells, each capable of holding a single symbol.
This simple model has three fundamental abilities:

Read the symbol on the tape cell under the head.
Write a new symbol to that cell, erasing what was there.
Move the head one cell to the left or one cell to the right. (Two-Way Head)

That’s it! The machine’s behavior is directed by a finite set of states, just like an Finite
Automaton.

3 / 23

Recap

First Example

Consider the language 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 0}.
A string 𝑤 is given on the tape, and the head starts at the leftmost symbol of 𝑤.
Infinitely many blank symbols (denoted by □) follow 𝑤.

Turing Machine naturally mimics our intuition for algorithms:
1. Scan right until first □ to check whether 𝑤 is of the form 𝑎∗𝑏∗𝑐∗. If not, reject.
2. Return head to the leftmost symbol.
3. Scan right, crossing off single 𝑎, 𝑏, and 𝑐 (replace them with ×) in each pass.
4. If all symbols are crossed off, accept.
5. If a symbol is missing, reject.
6. Go to step 2.

4 / 23

Recap

What is a Turing machine (TM)?

Definition
A Turing machine (TM) M is a 6-tuple
M = (Q,Σ,Γ, δ, q0, H), where,
1. Q: A finite set (set of states).
2. Σ: A finite set (input alphabet). Σ excludes .,�,←,→.
3. Γ: A finite set (tape alphabet).

Σ ∪ {.,�} ⊆ Γ. Γ excludes ←,→.
4. δ : (Q−H)×Γ to Q×(Γ∪{←,→}) is the transition function

such that the tape head never falls off or erases . symbol
B Time (computation)

5. q0: The start state (belongs to Q).
6. H = {qacc, qrej}: The set of halting states (subset of Q).

5 / 23

Recap

Some notes on the Turing machine

Symbols
. : Left end symbol
� : Blank symbol
←,→ : Left and right movement symbols
Σ : Represents input/output/special symbols
Γ : Represents symbols that can be present on the tape

Transition
M never falls off the left end of the tape i.e.,
when the current symbol is ., the tape head has to move right
M stops when it reaches an accept or a reject state i.e.,
δ is not defined for states in H

6 / 23

Recap

Construct TM to erase the input string

Problem
Construct a TM to erase the input string

Solution (continued)

q0 q1 qh

(a,�)
(�,�)

(a, a), (�,→)

(.,→)

Current symbol (Γ)
Current state (Q−H) . a �

q0 (q0,→) (q1,�) (qh,�)
q1 − (q0, a) (q0,→)

7 / 23

TM: More Examples

Construct TM for a regular language

Problem
Construct a DFA that accepts all strings from the language
L = {strings containing ab or end with ba}

Solution
Expression: ((a|b)∗ab(a|b)∗) | ((a|b)∗ba)
DFA:

q1start q2 q3

q4 q5

a b

b
a

a
b

a a, b

b

8 / 23

TM: More Examples

Construct TM for a regular language

Problem
Construct a Turing machine that accepts all strings from the
language L = {strings containing ab or end with ba}

Solution

q0

q1 q2 q3

q4 q5 qacc

(.,→)

(a,→) (b,→)

(b,→)

(a,→)

(a,→) (b,→) ({�, a, b},→)

(�,→)

(a,→)

(b,→)

9 / 23

TM: More Examples

Construct TM for a regular language

Problem
Construct a Turing machine that accepts all strings from the
language L = {strings containing ab or end with ba}

Solution (continued)

Current symbol (Γ)
Current state (Q−H) . a b �

q0 (q1,→) − − −
q1 − (q2,→) (q4,→) −
q2 − (q2,→) (q3,→) −
q3 − (qacc,→) (qacc,→) (qacc,→)
q4 − (q5,→) (q4,→) −
q5 − (q2,→) (q3,→) (qacc,→)

10 / 23

TM: More Examples

Construct TM for a regular language

Problem
Construct a Turing machine that accepts all strings from the
language L = {strings containing ab or end with ba}

Solution (continued)

TM accepts the string bba because it enters the qacc state
Time State Tape
0 q0 . b b a � � · · ·
1 q1 . b b a � � · · ·
2 q4 . b b a � � · · ·
3 q4 . b b a � � · · ·
4 q5 . b b a � � · · ·
5 qacc . b b a � � · · ·

11 / 23

TM: More Examples

Construct TM for a regular language

Problem
Construct a Turing machine that accepts all strings from the
language L = {strings containing ab or end with ba}

Solution (continued)

TM rejects the string bbb because it enters the qrej state

Time State Tape
0 q0 . b b b � � · · ·
1 q1 . b b b � � · · ·
2 q4 . b b b � � · · ·
3 q4 . b b b � � · · ·
4 q4 . b b b � � · · ·
5 qrej . b b b � � · · ·

12 / 23

TM: More Examples

Construct TM for a regular language

Problem
Construct a Turing machine that accepts all strings from the
language L = {strings containing ab or end with ba}

Solution (continued)

TM accepts the string aabbbbb because it enters the qacc state
Unlike DFA and CFG, a TM can accept a string without scan-
ning the string completely

Time State Tape
0 q0 . a a b b b b b � · · ·
1 q1 . a a b b b b b � · · ·
2 q2 . a a b b b b b � · · ·
3 q2 . b b b b b b b � · · ·
4 q3 . b b a b b b b � · · ·
5 qacc . b b b b b b b � · · ·

13 / 23

TM: More Examples

Construct TM for a regular language

More problems
Use the TM to check acceptance of the following strings:
ε
aba B contains ab and ends with ba
aaa
aab
baa

14 / 23

TM: More Examples

Construct TM for copying strings

Problem
Construct a Turing machine that copies a string from the lan-
guage L = Σ∗ where Σ = {a, b}.

Solution
Language recognizers such as DFA’s cannot perform computa-
tional tasks such as copying strings.
So, no DFA can be used for copying strings.
Language generators such as CFG’s cannot perform computa-
tional tasks such as copying strings.
So, no CFG can be used for copying strings.
TM’s are more powerful than language recognizers and lan-
guage generators.
A TM can be used for copying strings.

15 / 23

TM: More Examples

Construct TM for copying strings

Problem
Construct a Turing machine that copies a string from the lan-
guage L = Σ∗ where Σ = {a, b}.

Solution
Language recognizers such as DFA’s cannot perform computa-
tional tasks such as copying strings.
So, no DFA can be used for copying strings.
Language generators such as CFG’s cannot perform computa-
tional tasks such as copying strings.
So, no CFG can be used for copying strings.
TM’s are more powerful than language recognizers and lan-
guage generators.
A TM can be used for copying strings.

16 / 23

TM: More Examples

Construct TM for copying strings

Solution (continued)

q0 q1 q2

q3 qacc

q7q4 q5

q6

(.,→) (�,#)
({a, b},→)

({a, b,#},←)

(.,→)
(#,#)

(a, 1) (b, 2)

(�, a) (�, b)
(1, a), (2, b)

({a, b},→)

({a, b,#},←)

({a, b,#, 1},→) ({a, b,#, 2},→)

17 / 23

TM: More Examples

Construct TM for copying strings

Solution (continued)

State Tape
q0 . b b a � � � � � · · ·
q2 . b b a # � � � � · · ·
q2 . b b a # � � � � · · ·
q5 . 2 b a # � � � � · · ·
q6 . 2 b a # b � � � · · ·
q7 . b b a # b � � � · · ·
q5 . b 2 a # b � � � · · ·
q6 . b 2 a # b b � � · · ·
q7 . b b a # b b � � · · ·
q4 . b b 1 # b b � � · · ·
q6 . b b 1 # b b a � · · ·
q7 . b b a # b b a � · · ·
q3 . b b a # b b a � · · ·
qacc . b b a # b b a � · · ·

18 / 23

TM: More Examples

Construct TM for copying strings

Problem
Construct a Turing machine that copies a string from the lan-
guage L = Σ∗ where Σ = {a, b}.

Solution (continued)

Γ = Σ ∪ {.,�,#, 1, 2}
Cells with “−” means that the TM terminates in qrej state

Current symbol (Γ)
State . a b # 1 2 �

q0 (q1,→) − − − − − −
q1 − (q1,→) (q1,→) − − − (q2,#)
q2 (q3,→) (q2,←) (q2,←) (q2,←) − − −
q3 − (q4, 1) (q5, 2) (qacc,#) − − −
q4 − (q4,→) (q4,→) (q4,→) (q4,→) − (q6, a)
q5 − (q5,→) (q5,→) (q5,→) − (q5,→) (q6, b)
q6 − (q6,←) (q6,←) (q6,←) (q7, a) (q7, b) −
q7 − (q3,→) (q3,→) − − − −

19 / 23

TM: More Examples

Construct TM for copying strings

More problems
Use the TM to copy the following strings:
ε
a
b
aab

20 / 23

TM: More Examples

How to construct complicated TM’s?

Constructing complicated TM’s
We can make complicated TM’s from simpler TM’s using the
structure of a finite automaton
Nodes of the automaton are the simpler TM’s
A connection Mi

k−→ Mj means when TM Mi halts and the
current tape symbol is k, then TM Mj can start.

M1start M2

M3

a

b

Can you think of some examples of complicated TM’s built from
simpler TM’s?

21 / 23

Scope of this Course

Why So Complicated?!

Turing Machine is a very low-level model of computation.
It is designed to be as simple as possible while still being able to perform any
computation that can be done by a computer.
The complexity of the examples arises from the need to explicitly manage the tape
and head movements, which are abstracted away in higher-level models like
programming languages.
The goal is to understand the fundamental capabilities and limitations of
computation, which requires working with this minimalistic model.

We will not focus on designing Turing Machines for specific tasks, but rather on
understanding what can and cannot be computed in principle.

22 / 23

Scope of this Course

How are TM’s different from DFA’s and PDA’s?

Feature DFA PDA TM
Memory size Finite Infinite Infinite
Halts? 3 3 3, 7

Input scanning Left-to-right Left-to-right Arbitrary
#Passes 1 pass 1 pass Any
Halting End of input End of input Accept state
Computing power Least Medium Highest
Language recognizer? 3 3 3

Function calculator? 7 7 3

Decide RL’s? 3 3 3

Decide CFL’s? 7 3 3

Decide REL’s? 7 7 3

23 / 23

	Recap
	TM: More Examples
	Scope of this Course

