CS304: Automata and Formal Languages

Lec 22

Turing Machines: Continued

Rachit Nimavat

October 10, 2025

Outline

- Recap
- 2 TM: More Examples
- Scope of this Course

Turing Machine: Informal Defn

Imagine a machine with a **read/write head** that can move along an infinitely long piece of **tape**. This tape is divided into **cells**, each capable of holding a single symbol.

This simple model has three fundamental abilities:

Read the symbol on the tape cell under the head.

Write a new symbol to that cell, erasing what was there.

Move the head one cell to the left or one cell to the right. (Two-Wav Head)

That's it! The machine's behavior is directed by a finite set of states, just like an Finite Automaton.

First Example

Consider the language $L = \{a^n b^n c^n \mid n \ge 0\}.$

A string w is given on the tape, and the head starts at the leftmost symbol of w. Infinitely many blank symbols (denoted by \square) follow w.

Turing Machine naturally mimics our intuition for algorithms:

- 1. Scan right until first \square to check whether w is of the form $a^*b^*c^*$. If not, reject.
- 2. Return head to the leftmost symbol.
- 3. Scan right, crossing off single a, b, and c (replace them with \times) in each pass.
- 4. If all symbols are crossed off, accept.
- 5. If a symbol is missing, reject.
- 6. Go to step 2.

What is a Turing machine (TM)?

Definition

A Turing machine (TM) M is a 6-tuple

 $M=(Q,\Sigma,\Gamma,\delta,q_0,H)$, where,

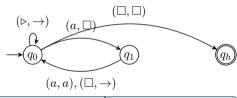
- 1. Q: A finite set (set of states).
- 2. Σ : A finite set (input alphabet). Σ excludes \triangleright , \square , \leftarrow , \rightarrow .
- 3. Γ : A finite set (tape alphabet). $\Sigma \cup \{\triangleright, \square\} \subset \Gamma$. Γ excludes \leftarrow, \rightarrow .
- 4. $\delta: (Q H) \times \Gamma$ to $Q \times (\Gamma \cup \{\leftarrow, \rightarrow\})$ is the transition function such that the tape head never falls off or erases \triangleright symbol

- 5. q_0 : The start state (belongs to Q).
- 6. $H = \{q_{acc}, q_{rej}\}$: The set of halting states (subset of Q).

Some notes on the Turing machine

Symbols

- \bullet \triangleright : Left end symbol
- \bullet \square : Blank symbol
- \bullet \leftarrow, \rightarrow : Left and right movement symbols
- ullet Σ : Represents input/output/special symbols
- ullet Γ : Represents symbols that can be present on the tape

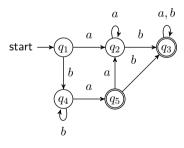

Transition

- ullet M never falls off the left end of the tape i.e., when the current symbol is \triangleright , the tape head has to move right
- M stops when it reaches an accept or a reject state i.e., δ is not defined for states in H

Construct TM to erase the input string

Problem

• Construct a TM to erase the input string


	Current symbol (Γ)					
Current state $(Q-H)$	\triangle	a				
q_0	(q_0, \rightarrow)	(q_1, \square)	(q_h, \square)			
q_1	_	(q_0, a)	(q_0, \rightarrow)			

Problem

 \bullet Construct a DFA that accepts all strings from the language $L=\{ {\rm strings~containing~}ab {\rm ~or~end~}with ~ba \}$

Solution

- Expression: $((a|b)^*ab(a|b)^*) \mid ((a|b)^*ba)$
- DFA:

Problem

 \bullet Construct a Turing machine that accepts all strings from the language $L=\{\text{strings containing }ab\text{ or end with }ba\}$

Solution

Problem

ullet Construct a Turing machine that accepts all strings from the language $L=\{ {
m strings \ containing \ } ab \ {
m or \ end \ with \ } ba \}$

	Current symbol (Γ)						
Current state $(Q-H)$	Δ	a	b				
q_0	(q_1, \rightarrow)	_	_	_			
q_1	_	(q_2, \rightarrow)	(q_4, \rightarrow)	-			
q_2	_	(q_2, \rightarrow)	$(q_4, \to) (q_3, \to)$	-			
q_3	_	(q_{acc}, o)	(q_{acc}, o)	(q_{acc}, o)			
q_4	_		(q_4, \rightarrow)	_			
q_5	_	(q_2, \rightarrow)	(q_3, \rightarrow)	(q_{acc}, o)			

Problem

 \bullet Construct a Turing machine that accepts all strings from the language $L=\{\text{strings containing }ab\text{ or end with }ba\}$

Solution (continued)

 \bullet TM accepts the string bba because it enters the $q_{\rm acc}$ state

Time	State	Tape						
0	q_0	Δ	b	b	a			:
1	q_1	∇	b	b	a			
2	q_4	∇	b	b	a			
3	q_4	Δ	b	b	a			:
4	q_5	∇	b	b	a			
5	$q_{\sf acc}$	∇	b	b	a			

Problem

 \bullet Construct a Turing machine that accepts all strings from the language $L = \{ \text{strings containing } ab \text{ or end with } ba \}$

Solution (continued)

 \bullet TM rejects the string bbb because it enters the $q_{\rm rej}$ state

Time	State	Tape						
0	q_0	Δ	b	b	b			
1	q_1	Δ	b	b	b			:
2	q_4	Δ	b	b	b			
3	q_4	Δ	b	b	b			
4	q_4	Δ	b	b	b			
5	q_{rej}	Δ	b	b	b			

Problem

 \bullet Construct a Turing machine that accepts all strings from the language $L=\{\text{strings containing }ab\text{ or end with }ba\}$

- \bullet TM accepts the string aabbbbb because it enters the $q_{\rm acc}$ state
- Unlike DFA and CFG, a TM can accept a string without scanning the string completely

Time	State	Tape								
0	q_0	Δ	a	a	b	b	b	b	b	:
1	q_1	Δ	a	a	b	b	b	b	b	
2	q_2	Δ	a	a	b	b	b	b	b	
3	q_2	Δ	b	b	b	b	b	b	b	
4	q_3	Δ	b	b	a	b	b	b	b	
5	$q_{\sf acc}$	Δ	b	b	b	b	b	b	b	

More problems

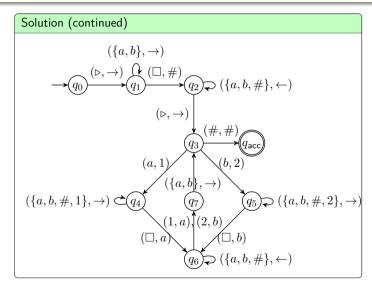
Use the TM to check acceptance of the following strings:

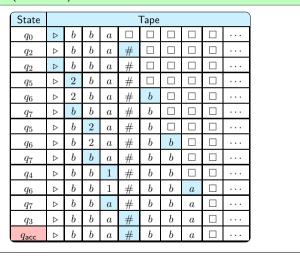
- €
- *aba*

 \triangleright contains ab and ends with ba

- aaa
- *aab*
- \bullet baa

Problem


• Construct a Turing machine that copies a string from the language $L=\Sigma^*$ where $\Sigma=\{a,b\}.$


Problem

• Construct a Turing machine that copies a string from the language $L=\Sigma^*$ where $\Sigma=\{a,b\}.$

Solution

- Language recognizers such as DFA's cannot perform computational tasks such as copying strings.
 - So, no DFA can be used for copying strings.
- Language generators such as CFG's cannot perform computational tasks such as copying strings.
 - So, no CFG can be used for copying strings.
- TM's are more powerful than language recognizers and language generators.
 - A TM can be used for copying strings.

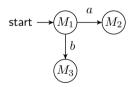
Problem

• Construct a Turing machine that copies a string from the language $L=\Sigma^*$ where $\Sigma=\{a,b\}.$

- $\Gamma = \Sigma \cup \{ \triangleright, \square, \#, 1, 2 \}$
- ullet Cells with "-" means that the TM terminates in $q_{\rm rej}$ state

	Current symbol (Γ)							
State	Δ	a	b	#	1	2		
q_0	(q_1, \rightarrow)	_	_	_	_	_	_	
q_1	_	(q_1, \rightarrow)	(q_1, \rightarrow)	_	_	_	$(q_2, \#)$	
q_2	(q_3, \rightarrow)	(q_2, \leftarrow)	(q_2, \leftarrow)	(q_2, \leftarrow)	_	_	_	
q_3	_	$(q_4, 1)$	$(q_{5}, 2)$	$(q_{acc},\#)$	_	_	_	
q_4	_	(q_4, \rightarrow)	(q_4, \rightarrow)	(q_4, \rightarrow)	(q_4, \rightarrow)	_	(q_6, a)	
q_5	_	(q_5, \rightarrow)	(q_5, \rightarrow)	(q_5, \rightarrow)	_	(q_5, \rightarrow)	(q_6,b)	
q_6	_	(q_6, \leftarrow)	(q_6, \leftarrow)	(q_6, \leftarrow)	(q_7, a)	(q_7,b)	_	
q_7	_	(q_3, \rightarrow)	(q_3, \rightarrow)	_	_	_		

More problems


Use the TM to copy the following strings:

- 6
- a
- b
- *aab*

How to construct complicated TM's?

Constructing complicated TM's

- We can make complicated TM's from simpler TM's using the structure of a finite automaton
- Nodes of the automaton are the simpler TM's
- A connection $M_i \xrightarrow{k} M_j$ means when TM M_i halts and the current tape symbol is k, then TM M_j can start.

 Can you think of some examples of complicated TM's built from simpler TM's?

Why So Complicated?!

Turing Machine is a very low-level model of computation.

It is designed to be as simple as possible while still being able to perform any computation that can be done by a computer.

The complexity of the examples arises from the need to explicitly manage the tape and head movements, which are abstracted away in higher-level models like programming languages.

The goal is to understand the fundamental capabilities and limitations of computation, which requires working with this minimalistic model.

We will **not focus on designing Turing Machines for specific tasks**, but rather on **understanding what can and cannot be computed in principle**.

How are TM's different from DFA's and PDA's?

Feature	DFA	PDA	TM
Memory size	Finite	Infinite	Infinite
Halts?	✓	✓	✓, X
Input scanning	Left-to-right	Left-to-right	Arbitrary
#Passes	1 pass	1 pass	Any
Halting	End of input	End of input	Accept state
Computing power	Least	Medium	Highest
Language recognizer?	1	1	1
Function calculator?	X	X	1
Decide RL's?	✓	✓	1
Decide CFL's?	×	1	1
Decide REL's?	Х	Х	✓