CS304: Automata and Formal Languages

Lec 23

Encoding and Variations of TMs

Rachit Nimavat

October 13, 2025

Outline

- Recap
- 2 Encoding TMs
- 3 Language of TM
- Multitape TMs

What is a Turing machine (TM)?

Definition

A Turing machine (TM) M is a 6-tuple

 $M = (Q, \Sigma, \Gamma, \delta, q_0, H)$, where,

- 1. Q: A finite set (set of states).
- 2. Σ : A finite set (input alphabet). Σ excludes \triangleright , \square , \leftarrow , \rightarrow .
- 3. Γ : A finite set (tape alphabet).
 - $\Sigma \cup \{\triangleright, \square\} \subset \Gamma$. Γ excludes \leftarrow, \rightarrow .
- 4. $\delta: (Q-H) \times \Gamma$ to $Q \times (\Gamma \cup \{\leftarrow, \rightarrow\})$ is the transition function such that the tape head never falls off or erases ▷ symbol

- 5. q_0 : The start state (belongs to Q).
- 6. $H = \{q_{acc}, q_{rei}\}$: The set of halting states (subset of Q).

Some notes on the Turing machine

Symbols

- \bullet \triangleright : Left end symbol
- : Blank symbol
- ullet \leftarrow , \rightarrow : Left and right movement symbols
- ullet Σ : Represents input/output/special symbols
- ullet Γ : Represents symbols that can be present on the tape

Transition

- ullet M never falls off the left end of the tape i.e., when the current symbol is \triangleright , the tape head has to move right
- M stops when it reaches an accept or a reject state i.e., δ is not defined for states in H

Problem

 Construct a Turing machine to accept all strings from the language $L=\{a^nb^nc^n\mid n\geq 1\}$

Problem

 • Construct a Turing machine to accept all strings from the language $L=\{a^nb^nc^n\mid n\geq 1\}$

Solution

 $\mathsf{Language}\ A = \{abc, aabbcc, aaabbbccc, \ldots\}$

- A TM accepts this language.

Problem

 Construct a Turing machine to accept all strings from the language $L=\{a^nb^nc^n\mid n\geq 1\}$

Solution (continued)

State	Tape							
q_0	Δ	a	a	b	b	c	c	:
q_2	Δ	x	a	b	b	c	c	:
q_3	Δ	x	a	y	b	c	c	
q_4	Δ	x	a	y	b	z	c	:
q_2	Δ	x	x	y	b	z	c	
q_3	Δ	x	x	y	y	z	c	
q_4	Δ	x	x	y	y	z	z	
q_5	Δ	x	x	y	y	z	z	
q_{acc}	Δ	x	x	y	y	z	z	

Problem

 • Construct a Turing machine to accept all strings from the language $L=\{a^nb^nc^n\mid n\geq 1\}$

Solution (continued)

- $\Gamma = \Sigma \cup \{\triangleright, \square, x, y, z\}$
- ullet Cells with "—" means that the TM terminates in $q_{\rm rej}$ state

	Current symbol (Γ)							
St.	\triangleright	a	b	c	x	y	z	
q_0	(q_1, \rightarrow)	_	_	-	_	_	-	-
q_1	_	(q_2,x)	_	_	_	(q_5, \rightarrow)	_	-
q_2	_	(q_2, \rightarrow)	(q_3, y)	-	(q_2, \rightarrow)	(q_2, \rightarrow)	_	-
q_3	_	_	(q_3, \rightarrow)	(q_4,z)	_	(q_3, \rightarrow)	(q_3, \rightarrow)	-
q_4	_	(q_4, \leftarrow)	(q_4, \leftarrow)	_	(q_1, \rightarrow)	(q_4, \leftarrow)	(q_4, \leftarrow)	-
q_5	_	_	_	_	_	(q_5, \rightarrow)	(q_5, \rightarrow)	(q_{acc}, \square)

Problem

 Oonstruct a Turing machine to accept all strings from the language $L=\{a^nb^nc^n\mid n\geq 1\}$

Solution (continued) $(\{a, x, y\}, \rightarrow) \quad (\{b, y, z\}, \rightarrow)$ (a,x)(b, y)(c,z) (y, \rightarrow) $(\{a,b,y,z\},\leftarrow)$

Why So Complicated?!

Turing Machine is a very low-level model of computation.

It is designed to be as simple as possible while still being able to perform any computation that can be done by a computer.

The complexity of the examples arises from the need to explicitly manage the tape and head movements, which are abstracted away in higher-level models like programming languages.

The goal is to understand the fundamental capabilities and limitations of computation, which requires working with this minimalistic model.

We will **not focus on designing Turing Machines for specific tasks**, but rather on **understanding what can and cannot be computed in principle**.

How are TM's different from DFA's and PDA's?

Feature	DFA	PDA	TM	
Memory size	Finite	Infinite	Infinite	
Halts?	✓	1	✓, X	
Input scanning	Left-to-right	Left-to-right	Arbitrary	
#Passes	1 pass	1 pass	Any	
Halting	End of input	End of input	Accept state	
Computing power	Least	Medium	Highest	
Language recognizer?	1	1	1	
Function calculator?	X	X	1	
Decide RL's?	✓	✓	1	
Decide CFL's?	×	1	1	
Decide REL's?	Х	X	✓	

Encoding TMs

How to represent a TM M as a natural number?

Every TM M can be converted to a TM with:

States are $\{q_1,\ldots,q_k\}$ for some $k\in \mathbf{N}$

 q_1 is start States

 q_2 is unique accept state

 q_3 is unique reject state

To encode TM, only need to write transitions

Encode as hence the encoding is a string over $\{1, \dots, k\} \cup \Sigma \cup \Gamma \cup \{\leftarrow, \rightarrow, \#\}$.

Can also convert this encoding to a natural number denoted by < M > (hides the specifics about the convention used to get the number).

Each TM encoded by a unique natural number, and each natural number encodes a TM (not necessarily a valid TM). Convention: treat invalid TMs as rejecting all inputs.

In this course, we use < M > to denote the encoding of TM M as a natural number and by M_n to denote the TM encoded by natural number n.

Terminology

Consider a TM M.

M accepts a string w if M halts in an accept state on input w.

M rejects a string w if M halts in a reject state on input w.

M loops on a string w if M neither accepts nor rejects w (i.e., it runs forever).

M does not accept w if M either rejects or loops on w.

M does not reject w if M either accepts or loops on w.

M halts on w if M either accepts or rejects w.

Recognizers and Recognizability

Consider a TM M and a language L over Σ .

M is a **recognizer** for L if for all $w \in \Sigma^*$, $w \in L$ if and only if (written, iff) M accepts w.

L is **recognizable** if M is a recognizer for L.

Can you use a recognizer M to verify that a string w is in L?

Can you use a recognizer M to verify that a string w is not in L?

Recall, Recursively Enumerable (RE) languages are the same as Recognizable languages.

Deciders and Decidability

Consider a TM M and a language L over Σ .

M is a **decider** for L if for all $w \in \Sigma^*$ (i) M halts on input w; and (ii) $w \in L$ iff M accepts w.

L is **decidable** if M is a decider for L.

Can you use a decider M to verify that a string w is in L?

Can you use a decider M to verify that a string w is not in L?

Recursive (R) languages are the same as Decidable languages.

R and RE

Every decider is also a recognizer.

This means $R \subseteq RE$

Huge open question: Is R = RE?

Most believe $R \neq RE$. Just confirming answers should be easier than solving them.

Multitape TMs

A Multitape Turing Machine is a variation of the standard TM that has multiple tapes, each with its own independent read/write head.

Formally, a k-tape Turing Machine has k tapes and k heads.

The transition function is modified to read symbols from all k tapes and write symbols to all k tapes in a single step.

The machine can move each head independently (left, right, or stay).

Computationally equivalent to standard single-tape TM. Having 2 infinite RAMs is same as having 1 infinite RAM.

More intuitive for designing algorithms

Many other equivalent variants of TMs exist. (See, Chapter 8 of ALC.)