Rachit Nimavat

October 13, 2025

1/17

Outline

© Recap

© Encoding TMs
© Language of TM

@ Multitape TMs

2/17

Recap

What is a Turing machine (TM)?

Definition
A Turing machine (TM) M is a 6-tuple
M= (Q,%,T,0,q0, H), where,
1. @: A finite set (set of states).
2. X A finite set (input alphabet). ¥ excludes >, [0, +, —.
3. T": A finite set (tape alphabet).
Y U{p,0} CT. T excludes <, —.
4. §:(Q—H)xT toQx(I'U{<,—1}) is the transition function
such that the tape head never falls off or erases > symbol
> Time (computation)

(6]

. go: The start state (belongs to Q).
. H = {qacc, Grej}: The set of halting states (subset of Q).

[e)}

3/17

Recap

Some notes on the Turing machine

Symbols

e > : Left end symbol

e []: Blank symbol

@ . — : Left and right movement symbols

@ ¥ : Represents input/output/special symbols

o ' : Represents symbols that can be present on the tape

Transition

@ M never falls off the left end of the tape i.e.,

when the current symbol is >, the tape head has to move right
@ M stops when it reaches an accept or a reject state i.e.,

d is not defined for states in H

4/17

Recap

Construct TM for accepting L = {a"b"c" | n > 1}

| Problem |

@ Construct a Turing machine to accept all strings from the lan-
guage L = {a™b"c" | n > 1}

5/17

Recap

Construct TM for accepting L = {a"b"c" | n > 1}

Problem

@ Construct a Turing machine to accept all strings from the lan-
guage L = {a™b"c" | n > 1}

Solution

Language A = {abc, aabbee, aaabbbecc, . . .}

@ No DFA can accept this language. > Use pumping lemma
@ No CFG can accept this language. > Use pumping lemma

@ A TM accepts this language.

6/17

Recap

Construct TM for accepting L = {a"b"c" | n > 1}

Problem
@ Construct a Turing machine to accept all strings from the lan-
guage L = {a™b"c" | n > 1}
Solution (continued)
State Tape
qo > | a blblc]c|O
Q2 >lxz|lalb]lblc|lc|O
qs >lazlaly|blc|ecl|O
q4 >lzlaly|blz]|cl|O
Q@ >laez|lz|ly|blz]cl|O
qs3 >lez|lz|ylylz|c| DO
q4 >lez|lz|ylylz|z]|0O
qs >lez|lz|lylylz|z]|0O
Gace [> || |ylyl2]2]|0

7/17

Recap

Construct TM for accepting L = {a"b"c" | n > 1}

Problem

@ Construct a Turing machine to accept all strings from the lan-
guage L = {a"b"c" | n > 1}

Solution (continued)

o I'=XuU{>,0z,vy,z2}

o Cells with “—" means that the TM terminates in gy State
Current symbol (T")

St.| > a b c a Y z 0
q (g, =) — - - - - -
a| — |(g2)]| - - o (U] -
| — |(=)](gy)]| — (@)@ =) - -
| - = @ =)@ 2)| - |[(@z—=)|(@s—=)] -
al = (e |lasao)| = (@, =2) (g,) [(aa,)| -
g5 _ - _ - (q‘s, ‘>) (Q5~, %) (‘Jacc; D)

8/17

Recap

Construct TM for accepting L = {a"b"c" | n > 1}

Problem

@ Construct a Turing machine to accept all strings from the lan-
guage L = {a"b"c" | n > 1}

Solution (continued)

({a, 29}, =) ({by, 2} =)

@ ¢~ (wx) L by
0

({y72}7_>) ({a’7 b7 y7 Z}7<_)

9/17

Recap

Why So Complicated?!

Turing Machine is a very low-level model of computation.

It is designed to be as simple as possible while still being able to perform any
computation that can be done by a computer.

The complexity of the examples arises from the need to explicitly manage the tape
and head movements, which are abstracted away in higher-level models like
programming languages.

The goal is to understand the fundamental capabilities and limitations of
computation, which requires working with this minimalistic model.

We will not focus on designing Turing Machines for specific tasks, but rather on
understanding what can and cannot be computed in principle.

10/17

How

are TM’s different from DFA’s and PDA’s?

Recap

Feature DFA PDA ™
Memory size Finite Infinite Infinite
Halts? v v v, X
Input scanning Left-to-right | Left-to-right | Arbitrary
#Passes 1 pass 1 pass Any
Halting End of input | End of input | Accept state
Computing power Least Medium Highest
Language recognizer? | v v v
Function calculator? X X v
Decide RL's? v v v
Decide CFL's? X v v
Decide REL's? X X v

11/17

Encoding TMs

Encoding TMs

How to represent a TM M as a natural number?
Every TM M can be converted to a TM with:
States are {qy, ..., q;} for some k € N
qy is start States
g5 is unique accept state
gs is unique reject state
To encode TM, only need to write transitions
Encode as hence the encoding is a string over {1,...,k} UX UT U {«, —, #}.
Can also convert this encoding to a natural number denoted by < M > (hides the
specifics about the convention used to get the number).
Each TM encoded by a unique natural number, and each natural number encodes a
TM (not necessarily a valid TM). Convention: treat invalid TMs as rejecting all
inputs.
In this course, we use < M > to denote the encoding of TM M as a natural number

and by M,, to denote the TM encoded by natural number n.)
12/17

Language of TM

Terminology

Consider a TM M.
M accepts a string w if M halts in an accept state on input w.
M rejects a string w if M halts in a reject state on input w.
M loops on a string w if M neither accepts nor rejects w (i.e., it runs forever).
M does not accept w if M either rejects or loops on w.
M does not reject w if M either accepts or loops on w.

M halts on w if M either accepts or rejects w.

13/17

Language of TM

Recognizers and Recognizability

Consider a TM M and a language L over .

M is a recognizer for L if for all w € ¥*, w € L if and only if (written, iff) M
accepts w.

L is recognizable if M is a recognizer for L.
Can you use a recognizer M to verify that a string w is in L?
Can you use a recognizer M to verify that a string w is not in L?

Recall, Recursively Enumerable (RE) languages are the same as Recognizable
languages.

14 /17

Language of TM

Deciders and Decidability

Consider a TM M and a language L over X.

M is a decider for L if for all w € ¥* (i) M halts on input w; and (ii) w € L iff M
accepts w.

L is decidable if M is a decider for L.
Can you use a decider M to verify that a string w is in L?
Can you use a decider M to verify that a string w is not in L?

Recursive (R) languages are the same as Decidable languages.

15/17

Language of TM

R and RE

Every decider is also a recognizer.
This means R C RE
Huge open question: Is R = RE?

Most believe R #+ RE. Just confirming answers should be easier than solving them.

16 /17

Multitape TMs

Multitape TMs

A Multitape Turing Machine is a variation of the standard TM that has multiple tapes,
each with its own independent read/write head.

Formally, a k-tape Turing Machine has k tapes and k heads.

The transition function is modified to read symbols from all k tapes and write
symbols to all k tapes in a single step.

The machine can move each head independently (left, right, or stay).

Computationally equivalent to standard single-tape TM. Having 2 infinite RAMs is
same as having 1 infinite RAM.

More intuitive for designing algorithms
Many other equivalent variants of TMs exist. (See, Chapter 8 of ALC.)

17/17

	Recap
	Encoding TMs
	Language of TM
	Multitape TMs

