Rachit Nimavat

October 16, 2025

1/15



Outline

@ Recap

© Language of TM
© Universal TM

@ Halting Problem

2/15



Recap

What is a Turing machine (TM)?

Definition
A Turing machine (TM) M is a 6-tuple
M= (Q,%,T,0,q0, H), where,
1. @: A finite set (set of states).
2. X A finite set (input alphabet). ¥ excludes >, [0, +, —.
3. T": A finite set (tape alphabet).
Y U{p,0} CT. T excludes <, —.
4. §:(Q—H)xT toQx(I'U{<,—1}) is the transition function
such that the tape head never falls off or erases > symbol
> Time (computation)

(6]

. go: The start state (belongs to Q).
. H = {qacc, Grej}: The set of halting states (subset of Q).

[e)}

3/15



Recap

Some notes on the Turing machine

Symbols

e > : Left end symbol

e []: Blank symbol

@ . — : Left and right movement symbols

@ ¥ : Represents input/output/special symbols

o ' : Represents symbols that can be present on the tape

Transition

@ M never falls off the left end of the tape i.e.,

when the current symbol is >, the tape head has to move right
@ M stops when it reaches an accept or a reject state i.e.,

d is not defined for states in H

4/15



How

are TM’s different from DFA’s and PDA’s?

Recap

Feature DFA PDA ™
Memory size Finite Infinite Infinite
Halts? v v v, X
Input scanning Left-to-right | Left-to-right | Arbitrary
#Passes 1 pass 1 pass Any
Halting End of input | End of input | Accept state
Computing power Least Medium Highest
Language recognizer? | v v v
Function calculator? X X v
Decide RL's? v v v
Decide CFL's? X v v
Decide REL's? X X v

5/15



Recap

Encoding TMs

How to represent a TM M as a natural number?
Every TM M can be converted to a TM with:
States are {qy, ..., q;} for some k € N
qy is start States
g5 is unique accept state
gs is unique reject state
To encode TM, only need to write transitions
Encode as hence the encoding is a string over {1,...,k} UX UT U {«, —, #}.
Can also convert this encoding to a natural number denoted by < M > (hides the
specifics about the convention used to get the number).
Each TM encoded by a unique natural number, and each natural number encodes a
TM (not necessarily a valid TM). Convention: treat invalid TMs as rejecting all
inputs.
In this course, we use < M > to denote the encoding of TM M as a natural number

and by M,, to denote the TM encoded by natural number n. )
6/15



Language of TM

Recognizers and Recognizability

Consider a TM M and a language L over X.

M is a recognizer for L if for all w € ¥*, w € L if and only if (written, iff) M
accepts w.

L is recognizable if M is a recognizer for L.

Recall, Recursively Enumerable (RE) languages are the same as Recognizable
languages.

7/15



Language of TM

Deciders and Decidability

Consider a TM M and a language L over 3.

M is a decider for L if for all w € ¥* (i) M halts on input w; and (ii) w € L iff M
accepts w.

L is decidable if M is a decider for L.

Recursive (R) languages are the same as Decidable languages.

8/15



Language of TM

R and RE

Every decider is also a recognizer.
This means R C RE
Huge open question: Is R = RE?

Most believe R #+ RE. Just confirming answers should be easier than solving them.

9/15



Universal TM

Universal Turing machine (UTM)

Definition
e A Universal Turing machine (UTM) MU can simulate the ex-
ecution of any Turing machine M on any input w.

Working of UTM U ((M, w))

o Halt iff M halts on input w.
o |[f Misa deciding/semideciding machine, then
o If M accepts, accept.
e If M rejects, reject.
o |f M computes a function, then U((M,w)) must equal M (w).

10/15



Universal TM

Universal TM Exists

Consider a TM M. Build a Universal TM U that takes input <M>, w where <M> is the
encoding of TM M and w € X* is an input to M.
Convenient to assume U has 3 tapes.

Program Tape contains <M>. M-tape simulates the tape of M. State Tape to
keep track of M's state.

Initially, U has <M> on Program Tape, w on M-tape and ¢, (start state of M) on
State Tape.

Now, U simulates M on input w step-by-step.

Conclusion: This Universal TM is a general purpose computer. All it needs is a
program/algorithm that tells it what/how to compute.

11/15



Universal TM

Repercussions of Universal TMs

Birth of the Stored-Program Computer

Computability Theory: Allows us to reason about the limits of what is
computable. We can now ask universal questions about all possible computations,
not just the computations of a single machine.

Universal TM strengthens Church-Turing Thesis since it can compute anything
that any TM can compute.

12/15



Halting Problem

Halting Problem

Can Universal TM compute everything? NO! There are limits to what is computable.
We'll see its impossible to determine if an arbitrary TM M halts on an arbitrary input w.
This is called the Halting Problem.

Question 1 (Halting Problem)

Does a TM Halts exist, that, on input ((M),w) accepts if M halts on input w and rejects
if M loops on input w?

Assume Halts exists. We'll show a contradiction by building a paradoxical TM Paradox
using Halts as a subroutine.
Input: single input: code (M) of a TM M.
Operation: Run Halts on input ((M), (M)).
Result:
If Halts accepts, then Paradox deliberately runs infinite loop.
If Halts rejects, then Paradox halts and accepts.

13/15



Halting Problem

Halting Problem : Continued

What happens when we run Paradox on input (Paradox)?

If Halts accepts input ((Paradox), (Paradox)), then Paradox loops forever on input
(Paradox). contradiction!

If Halts rejects input ((Paradox), (Paradox)), then Paradox halts and accepts on
input (Paradox). contradiction!

Conclusion: No TM can solve the Halting Problem. It is an uncomputable problem.

14/15



Halting Problem

Russel Paradox

Let R={S|S ¢ S} be the set of all sets that do not contain themselves as a member.

Does R contain itself as a member?
If R € R, then by definition of R, R ¢ R. contradiction!
If R ¢ R, then by definition of R, R € R. contradiction!

Helped mathematicians realize that naive set theory is inconsistent. Led to development
of more robust axiomatic set theories.

15/15



	Recap
	Language of TM
	Universal TM
	Halting Problem

