CS304: Automata and Formal Languages

Lec 24

Universal TMs

Rachit Nimavat

October 16, 2025

Outline

- Recap
- 2 Language of TM
- Universal TM
- 4 Halting Problem

What is a Turing machine (TM)?

Definition

A Turing machine (TM) M is a 6-tuple

 $M = (Q, \Sigma, \Gamma, \delta, q_0, H)$, where,

- 1. Q: A finite set (set of states).
- 2. Σ : A finite set (input alphabet). Σ excludes \triangleright , \square , \leftarrow , \rightarrow .
- 3. Γ : A finite set (tape alphabet).
 - $\Sigma \cup \{\triangleright, \square\} \subset \Gamma$. Γ excludes \leftarrow, \rightarrow .

4. $\delta: (Q-H) \times \Gamma$ to $Q \times (\Gamma \cup \{\leftarrow, \rightarrow\})$ is the transition function such that the tape head never falls off or erases ▷ symbol

- 5. q_0 : The start state (belongs to Q).
- 6. $H = \{q_{acc}, q_{rei}\}$: The set of halting states (subset of Q).

Some notes on the Turing machine

Symbols

- \bullet \triangleright : Left end symbol
- \bullet \square : Blank symbol
- ullet \leftarrow , \rightarrow : Left and right movement symbols
- \bullet Σ : Represents input/output/special symbols
- ullet Γ : Represents symbols that can be present on the tape

Transition

- ullet M never falls off the left end of the tape i.e., when the current symbol is \triangleright , the tape head has to move right
- M stops when it reaches an accept or a reject state i.e., δ is not defined for states in H

How are TM's different from DFA's and PDA's?

Feature	DFA	PDA	TM
Memory size	Finite	Infinite	Infinite
Halts?	✓	1	✓, X
Input scanning	Left-to-right	Left-to-right	Arbitrary
#Passes	1 pass	1 pass	Any
Halting	End of input	End of input	Accept state
Computing power	Least	Medium	Highest
Language recognizer?	1	1	1
Function calculator?	X	X	1
Decide RL's?	✓	✓	1
Decide CFL's?	×	1	1
Decide REL's?	X	X	✓

Encoding TMs

How to represent a TM M as a natural number?

Every TM M can be converted to a TM with:

States are $\{q_1, \dots, q_k\}$ for some $k \in \mathbb{N}$

 q_1 is start States

 q_2 is unique accept state

 q_3 is unique reject state

To encode TM, only need to write transitions

Encode as hence the encoding is a string over $\{1,\ldots,k\}\cup\Sigma\cup\Gamma\cup\{\leftarrow,\rightarrow,\#\}$.

Can also convert this encoding to a natural number denoted by < M > (hides the specifics about the convention used to get the number).

Each TM encoded by a unique natural number, and each natural number encodes a TM (not necessarily a valid TM). Convention: treat invalid TMs as rejecting all inputs.

In this course, we use < M > to denote the encoding of TM M as a natural number and by M_n to denote the TM encoded by natural number n.

Recognizers and Recognizability

Consider a TM M and a language L over Σ .

M is a **recognizer** for L if for all $w \in \Sigma^*$, $w \in L$ if and only if (written, iff) M accepts w.

L is **recognizable** if M is a recognizer for L.

Recall, Recursively Enumerable (RE) languages are the same as Recognizable languages.

Deciders and Decidability

Consider a TM M and a language L over Σ .

M is a **decider** for L if for all $w \in \Sigma^*$ (i) M halts on input w; and (ii) $w \in L$ iff M accepts w.

L is **decidable** if M is a decider for L.

Recursive (R) languages are the same as Decidable languages.

R and RE

Every decider is also a recognizer.

This means $R \subseteq RE$

Huge open question: Is R = RE?

Most believe $R \neq RE$. Just confirming answers should be easier than solving them.

Universal Turing machine (UTM)

Definition

 \bullet A Universal Turing machine (UTM) MU can simulate the execution of any Turing machine M on any input w.

Working of UTM $U(\langle M, w \rangle)$

- ullet Halt iff M halts on input w.
- \bullet If M is a deciding/semideciding machine, then
 - ullet If M accepts, accept.
 - ullet If M rejects, reject.
- \bullet If M computes a function, then $U(\langle M,w\rangle)$ must equal M(w).

Universal TM Exists

Consider a TM M. Build a Universal TM U that takes input <M>, w where <M> is the encoding of TM M and $w \in \Sigma^*$ is an input to M.

Convenient to assume U has 3 tapes.

Program Tape contains <M>. **M-tape** simulates the tape of M. **State Tape** to keep track of M's state.

Initially, U has <M> on Program Tape, w on M-tape and q_1 (start state of M) on State Tape.

Now, U simulates M on input w step-by-step.

Conclusion: This Universal TM is a general purpose computer. All it needs is a **program/algorithm** that tells it what/how to compute.

Repercussions of Universal TMs

Birth of the **Stored-Program Computer**

Computability Theory: Allows us to reason about the limits of what is computable. We can now ask universal questions about all possible computations, not just the computations of a single machine.

Universal TM strengthens **Church-Turing Thesis** since it can compute anything that any TM can compute.

Halting Problem

Can Universal TM compute everything? NO! There are limits to what is computable. We'll see its impossible to determine if an arbitrary TM M halts on an arbitrary input w. This is called the Halting Problem.

Question 1 (Halting Problem)

Does a TM Halts exist, that, on input $(\langle M \rangle, w)$ <u>accepts</u> if M halts on input w and <u>rejects</u> if M loops on input w?

Assume Halts exists. We'll show a contradiction by building a paradoxical TM Paradox using Halts as a subroutine.

Input: single input: code $\langle M \rangle$ of a TM M.

Operation: Run Halts on input $(\langle M \rangle, \langle M \rangle)$.

Result:

If Halts accepts, then Paradox deliberately runs infinite loop.

If Halts rejects, then Paradox halts and accepts.

Halting Problem: Continued

What happens when we run Paradox on input (Paradox)?

If Halts accepts input ($\langle Paradox \rangle$, $\langle Paradox \rangle$), then Paradox loops forever on input $\langle Paradox \rangle$. **contradiction!**

If Halts rejects input ($\langle Paradox \rangle$, $\langle Paradox \rangle$), then Paradox halts and accepts on input $\langle Paradox \rangle$. **contradiction!**

Conclusion: No TM can solve the Halting Problem. It is an **uncomputable problem**.

Russel Paradox

Let $R = \{S \mid S \notin S\}$ be the set of all sets that do not contain themselves as a member.

Does R contain itself as a member?

If $R \in R$, then by definition of R, $R \notin R$. contradiction!

If $R \notin R$, then by definition of R, $R \in R$. contradiction!

Helped mathematicians realize that **naive set theory** is inconsistent. Led to development of more robust axiomatic set theories.