
Reg. No.

Indian Institute of Information Technology Surat
Department of Computer Science and Engineering

Mid Semester Examination, 3rd Sem, 2025-26
Automata and Formal Languages (CS304)

Timing: 3:30PM to 5:00PM Date: 29 Sep 2025 Maximum Marks: 30

Read all instructions: Ensure that your solutions follow all the conventions
discussed in the class. Attempt all parts of a question at one place. If you cancel some
part of your solution, please strike it out clearly. Last section contains optional questions
of increasing difficulty. You must attempt only one. Answering a more challenging ques-
tion correctly will result in a higher total score for the exam. Choose wisely.

Question 1. Prove using induction that for all 𝑛 ≥ 2025, the number 42𝑛+1 + 3𝑛+2 is
divisible by 13. Clearly state the base case, induction hypothesis, and inductive step. (5)

Question 2. State whether the following are True or False. Justify your answer with a
brief explanation or a counterexample. Attempt any 5 of the following. If you attempt
more than 5, only the first 5 will be considered for evaluation.

a. For the language 𝐿 = ∅, 𝐿∗ = 𝐿. (2)

b. Irregular languages are closed under complementation. (2)

c. Let DFA1 be the class of DFAs with exactly one accept state. Then, DFA1 is less
powerful than DFA. (2)

d. Let NFAno-𝜀 be the class of NFAs without any 𝜀-transition. Then, NFAno-𝜀 is less
powerful than NFA. (2)

e. In the state-elimination algorithm to convert NFA to RE, the order in which the
states are eliminated matters. In other words, different orders of state elimination
can lead to different regular expressions describing distinct regular languages. (2)

f. There exists a pumpable irregular language. (2)

g. The language of all valid C programs is regular. (2)

Question 3. Consider the alphabet Σ = {𝑎, 𝑏}. Let 𝐿1 be the language defined by the
regular expression 𝑅1 = (𝑎𝑏)∗. Let 𝐿2 be the language defined by NFA 𝑁2 as follows:

• States: 𝑄 = {𝑞0, 𝑞1, 𝑞2} where 𝑞0 is the start state and 𝑞2 is the only final state;

• Transitions: 𝛿(𝑞0, 𝑏) = {𝑞1}, 𝛿(𝑞1, 𝑏) = {𝑞1, 𝑞2}, and 𝛿(𝑞2, 𝑎) = 𝑞0.

Answer the following without any proofs. If you do not know how to solve a part,
you can use still use the solution for that as a black-box to answer the rest of the parts.

1

a. Construct a diagram for an NFA that accepts 𝐿1. (1)

b. Construct a diagram for the NFA 𝑁2. (1)

c. Construct a diagram for an NFA that accepts 𝐿1𝐿2. (1)

d. Write a regular expression for 𝐿2. (1)

e. Write a regular expression for 𝐿1𝐿2. (1)

Designing Unambiguous CFGs.
For this section, consider the alphabet Σ = {𝑎, 𝑏, 𝑐, >, +, =}. Attempt any one ques-
tion from Questions 4-6. If you attempt more than one question, only the first one will
be considered for evaluation. State your answers without any proofs. Note that they
have increasing maximum scores. For maximum score, attempt Question 6.

Question 4. Let 𝐿1 be the language of C-style addition expressions over {𝑎, 𝑏, 𝑐}. Thus,
𝐿1 contains strings denoting expressions like 𝑎 + 𝑏 and 𝑏 + 𝑎 + 𝑐 + 𝑎 but not ones like
+𝑎 or 𝑎+ or 𝑎 = 𝑏 or 𝑎𝑏 + 𝑐. Design an unambiguous CFG for 𝐿1 that breaks ambiguity
by evaluating all addition operators from left to right. Draw a parse tree for 𝑎 + 𝑏 + 𝑐 to
show that it is parsed as (𝑎 + 𝑏) + 𝑐. (5)

Question 5. Let 𝐿2 be the language of C-style expressions over {𝑎, 𝑏, 𝑐} using operators
+ (addition), > (strictly greater than), and == (equality). Thus, 𝐿2 contains strings
denoting expressions like 𝑎 > 𝑏 + 𝑐 == 𝑎 and 𝑎 + 𝑏 > 𝑏 but not ones like 𝑎+ or 𝑎 = 𝑏 or
𝑎𝑏 + 𝑐. Design an unambiguous CFG for 𝐿2 that breaks ambiguity as follows:

• all addition operators are evaluated first, in left to right order; and

• all relational operators are evaluated next, in left to right order.

Draw parse tree for 𝑎 > 𝑏 + 𝑐 == 𝑎 to show that it is parsed as (𝑎 > (𝑏 + 𝑐)) == 𝑎. (7)

Question 6. Let 𝐿3 be the language of 𝐶-style expressions over {𝑎, 𝑏, 𝑐} using operators
+ (addition), > (strictly greater than), >= (greater than or equal to), == (equality), and
= (assignment). 1 Thus, 𝐿3 contains strings denoting expressions like 𝑎 = 𝑏 = 𝑐 and
𝑎 = 𝑏 == 𝑐 and 𝑏 = 𝑎 > 𝑏 + 𝑐 >= 𝑎, but not ones like 𝑎 == 𝑏 = 𝑐 or 𝑎𝑏 + 𝑐. Design an
unambiguous CFG for 𝐿3 that breaks ambiguity as follows:

• all addition operators are evaluated first, in left to right order;

• all relational operators are evaluated next, in left to right order; and

• all assignment operators are evaluated last, in right to left order.

Draw parse trees for 𝑎 > 𝑏 + 𝑐 >= 𝑎 and 𝑎 = 𝑏 = 𝑐 to show that they are parsed as
(𝑎 > (𝑏 + 𝑐)) >= 𝑎 and 𝑎 = (𝑏 = 𝑐) respectively. (10)

1Note that there is no + = (compound assignment) operator for 𝐿3.

2

