CS304 - Quiz 1

Aug 5, 2025

Name: Roll No.:

Question 1. Prove using induction that for all integers $n \ge 1$, we have $(n+1)^{n-1} \le n^n$.

Proof. Since $n \ge 1$, the above statement is equivalent to proving that for all $n \ge 1$,

$$\frac{\left(n+1\right)^{n-1}}{n^{n-1}} \le \frac{n^n}{n^{n-1}} \qquad \text{(divide both sides by } n^{n-1}\text{)}$$
 or,
$$\left(1+\frac{1}{n}\right)^{n-1} \le n$$

We proceed by induction on n.

Base Case: For n = ...,

Induction Hypothesis: For some $k \ge 1$, suppose $\left(1 + \frac{1}{k}\right)^{k-1} \le k$.

Inductive Step: We now need to show that,

$$\left(1+\frac{1}{\dots}\right)^{\dots} \leq \dots$$

Conclusion: By the principle of induction, for all integers $n \geq 1$, we have shown that $(n+1)^{n-1} \leq n^n$ holds.
Rough Space.