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Introduction to ML Why ML?

Machine learning can be used to...

Recognize speech, images, stock market patterns

Classify documents, predict protein sequences
Design course, generate course slides, produce video of an instructor teaching those
slides, generate assignments, solve assignments, grade assignments
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Introduction to ML Goals of ML Theory

Goals of ML Theory

Understand Learning!
What kinds of tasks can we hope to learn

What kind of data is needed to learn that task
What kind of guarantees we can achieve with that data

Optimize Learning!
How efficient our learning process can be
Relating data size, processing time, space, accuracy

Improve Learning!
How does biases in data affect learning
Preserve Privacy? Unlabeled data? Interactive environments? ...
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Introduction to ML Cast of characters and Rules of the game

Understanding Learning

The Real World

True Function: f(x) → y
where x ∈ X and y ∈ Y

Example:
X is the set of all images
Y = {CAT,DOG} is the set of all labels
x ∈ X is a single image
y = f(x) is its true label

ŷ = h(x) is the models output label
Cost: 1[y ̸= ŷ]

Training Data
(Strain)

Test Data
(Stest)

Sample
}Split

Learning
Algorithm

Hypothesis
h(x) → ŷ

Performance
(Error / Cost)Compare ŷ with true y
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Introduction to ML The guiding philosophy

Understanding Learning
Physicists Mathematicians

Start with: Start with:
Observations / Data Axioms / Laws

Goal: Goal:

Find laws that correctly explain the
observations/data

Find theorems/observations that
follow from the axioms

Where Machine Learning Fits?
Find rules that make good predictions about unseen data.
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Introduction to ML Formalizing the problem

Finding Good Rules that Generalize Well

The Core Question of Generalization
Model trained on training data

Performs well on test data
Confidence about performance on new, unseen data?

The Fundamental Assumption of ML
All data points are drawn independently from a fixed, but unknown, probability
distribution D.
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The Language of Learning Theory Data

The Language of Learning Theory : Data

X : The set of all data points
Y: The set of all labels
D: The underlying, but unknown joint probability distribution over X × Y .

Single Labeled Example
A data point x with (true) label y
is drawn from D

(x, y) ∼ D

Training Set
m labeled examples {(x1, y1), . . . , (xm, ym)} are drawn
independently and identically from D

S ∼ Dm

S = {(x1, y1), . . . , (xm, ym)} ∼ Dm

“The training set S drew m i.i.d examples from a single, unknown, underlying distribution D.”
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The Language of Learning Theory Hypothesis

The Language of Learning Theory : Learning Algorithm

Training Set

S = {(x1, y1), . . . , (xm, ym)} ∼ Dm

The Learning Algorithm
A does some computation over S to produce a hypothesis (prediction rule) h.
Under the hood, A searches within a Hypothesis Class (pre-defined ‘universe’ of
possible hypotheses) H.

H is the ”library” of models
our algorithm can choose from:
linear separators,
width-100 depth-10 neural networks,
100-line python programs...

Some ways in which A may work:
SVM: Out of all linear separators, pick one with maximum margin
Gradient Descent: Random initialization of weights and back-propagate gradients
until we hit a local minima
LLM: Ask ChatGPT to generate a 100 line python program

A typical approach:
Fix hypothesis class H

collect training data S and
choose a h ∈ H that minimizes error on S.

Empirical Risk Minimization (ERM)
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The Language of Learning Theory Error

The Language of Learning Theory : Measuring Error

The learning algorithm A reports a hypothesis h when given training data S.

S = {(x1, y1), . . . , (xm, ym)} ∼ Dm

A(S) outputs h ∈ H

Empirical Error: what we can calculate

errS(h) =
1

m

m∑
i1
1[h(xi) ̸= yi]

and what A typically minimizes:
A(S) ≡ argmin

h∈H
(errS(h))

True Error: what we want to minimize
errD(h) = Prx∼D [h(x) ̸= f(x)]
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The PAC Model

‘Probably Approximately Correct’ Learning

The learning algorithm A reports a hypothesis h when given training data S.
S = {(x1, y1), . . . , (xm, ym)} ∼ Dm

A(S) ≡ argmin
h∈H

(errS(h))

What is the true error errD(h) of the reported hypothesis h?
Goal: perform well on fresh data: Prx∼D [h(x) ̸= f(x)] < ϵ

Approximately Correct!

Really??

S is drawn randomly from the distribution D.Can only guarantee low error with high probability over the draw of training data S.
PrS∼Dm [errD(h) < ϵ] > 1− δ

δ is a small positive number representing probability of failure.
δ = 0.2 and ϵ = 0.1 means:
80% of the time, A outputs a hypothesis that is correct on 90% of the data points.

”Probably”
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δ is a small positive number representing probability of failure.
δ = 0.2 and ϵ = 0.1 means:
80% of the time, A outputs a hypothesis that is correct on 90% of the data points.

”Probably”
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The PAC Model Definition

The PAC Definition (Informal)

Definition 3.1
A hypothesis class H is PAC-learnable if

there exists an algorithm A, that, for any
desired accuracy ϵ > 0, any desired confidence δ < 1, any target f ∈ H, any distribution
D over data, with probability at least 1− δ, reports a hypothesis h ∈ H with errD(h) < ϵ.

Considerations
1 if there exists an algorithm A, that, ... : What is this algorithm A?

How to find A?
How many samples (m) needed for (ϵ, δ)-PAC guarantee?
Efficiency of A?

2 any target f ∈ H...: What about target function f?

What if f ̸∈ H?
What if no true target function exists?
Noise/Errors in labels or features?
Errros in training data?

3 any distribution D...: Does such D truly exist?

Future data may diverge
Possibly no fixed D even for training data
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Break Time!

Questions?

Let’s take a 10-minute break.
We’ll resume at 11am.
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