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Recap Definitions

Statistical View of Learning - I
We are given a training set S = {(x1, y1), . . . , (xm, ym)} of m labeled data points.

Let’s focus on when Y is discrete: Classification (like classifying images)

If Y is continous: Regression (like predicting tomorrow’s rainfall). We won’t worry
about it today.

*

The regression, we need to worry about the rain though.

We assume that S is drawn i.i.d. from D
Our learning algorithm A chooses a hypothesis h : X 7→ Y i.e on input x, the
prediction of h is h(x) = y
How well does h perform on unseen data?

Test Error ≡ errD(h) = Pr(x,y)∼D [h(x) 6= y]

We can measure:

Empirical Error ≡ errS(h) = Pr(x,y)∼S [h(x) 6= y]

Does low Empirical Error imply low Test Error?
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Recap Two types of errors

Statistical View of Learning - II

What we can see: errS(h)
Error on training set
We can calculate it

Empirical Risk Minimizer (ERM)
minimizes error on training set

errS(h) = Pr(x,y)∼S [h(x) 6= y]

ERM(S) ≡ argmin
h′∈H

errS(h′)

S: trainset of labeled real-world observations
h: a hypothesis that predicts a label for a (single)
datapoint

H: library of hypotheses to choose from

True Error errD(h)

Expected error on new data
We can’t calculate it directly
This is what we really care about!

errD(h) = Pr(x,y)∼D [h(x) 6= y]

D: unknown real-world we are sampling from

4 / 17
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Recap PAC Model

Statistical View of Learning - III
errS(h) is a random variable: depends on our “luck” while drawing S

errD(h) is a fixed, (but unkown) value
Can’t deterministically relate training error and test error...
Aim for a probabilistic guarantee!

PAC Definition (Informal)
For any desired accuracy (ϵ > 0) and confidence (1− δ < 1), we want an algorithm A
that finds a hypothesis h satisfying:

PrS∼Dm

errD (h ≡ A(S)) < ϵ︸ ︷︷ ︸
ApproximatelyCorrect

 >

 1− δ︸ ︷︷ ︸
Probably

 (1)

To Trust a Model or Not To Trust a Model?
If we have a PAC algorithm A, we can trust* a model h generated by it
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Generalization Guarantee ERM Algorithm

Generalization Guarantee for ERM Algorithm

Let’s say A minimizes empirical error:

A(S) = argmin
h∈H

(errS(h))

(Simplyfing Assumption) The Realizable Case. Assume that the ‘correct’ rule f ∈ H.

A(S) = h : errS(h) = 0

There are possibly many rules, including the correct rule f, that achieve 0-training
error. ERM algorithm A may report any such hypothesis.

ERM to PAC
When can we say errD(h) < ϵ with probability 1− δ?
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Generalization Guarantee ERM Algorithm

ERM to PAC
What must have happended if we found h with errS(h) = 0 but with errD(h) > ϵ?

We must have been very unlucky in our draw of training data!
Some bad hypothesis h fooled our training set S (i.e., had 0-empirical error)

Probability of getting fooled by a single bad hypothesis
Fix a bad hypothesis h ∈ H i.e with errD(h) > ϵ

When can it fool a labeled data point (x, y)?
h(x) = y. But Pr(x,y)∼D [h(x) = y] = 1− errD(h) < (1− ϵ).

The probability that h fooled S with m data points:

PrS∼Dm [h fooled S] =

(
Pr(x,y)∼D [h(x) = y]

)m︸ ︷︷ ︸

i.i.d assumption

< (1− ϵ)m
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Generalization Guarantee PAC guarantee

ERM to PAC

What must have happended if we found h with errS(h) = 0 and errD(h) > ϵ?
Some bad hypothesis h fooled our training set S (i.e., had 0-empirical error)

A single bad hypothesis h can fool us with probability

PrS∼Dm [h fooled S] < (1− ϵ)m

We got fooled by some hypothesis h ∈ H:

Pr [errD > h] =

Pr [some h fooled us] ≤ |H| · Pr [a specific h fooled us]
≤ |H| · (1− ϵ)m < δ,

if m ≥ 1
ϵ

(
ln |H|+ ln

(
1
δ

))

8 / 17



Generalization Guarantee PAC guarantee

ERM to PAC

What must have happended if we found h with errS(h) = 0 and errD(h) > ϵ?
Some bad hypothesis h fooled our training set S (i.e., had 0-empirical error)
A single bad hypothesis h can fool us with probability

PrS∼Dm [h fooled S] < (1− ϵ)m

We got fooled by some hypothesis h ∈ H:

Pr [errD > h] =

Pr [some h fooled us] ≤ |H| · Pr [a specific h fooled us]
≤ |H| · (1− ϵ)m < δ,

if m ≥ 1
ϵ

(
ln |H|+ ln

(
1
δ

))

8 / 17



Generalization Guarantee PAC guarantee

ERM to PAC

What must have happended if we found h with errS(h) = 0 and errD(h) > ϵ?
Some bad hypothesis h fooled our training set S (i.e., had 0-empirical error)
A single bad hypothesis h can fool us with probability

PrS∼Dm [h fooled S] < (1− ϵ)m

We got fooled by some hypothesis h ∈ H:

Pr [errD > h] =

Pr [some h fooled us] ≤ |H| · Pr [a specific h fooled us]
≤ |H| · (1− ϵ)m < δ,

if m ≥ 1
ϵ

(
ln |H|+ ln

(
1
δ

))

8 / 17



Generalization Guarantee PAC guarantee

ERM to PAC

What must have happended if we found h with errS(h) = 0 and errD(h) > ϵ?
Some bad hypothesis h fooled our training set S (i.e., had 0-empirical error)
A single bad hypothesis h can fool us with probability

PrS∼Dm [h fooled S] < (1− ϵ)m

We got fooled by some hypothesis h ∈ H:

Pr [errD > h] = Pr [some h fooled us]

≤ |H| · Pr [a specific h fooled us]
≤ |H| · (1− ϵ)m < δ,

if m ≥ 1
ϵ

(
ln |H|+ ln

(
1
δ

))

8 / 17



Generalization Guarantee PAC guarantee

ERM to PAC

What must have happended if we found h with errS(h) = 0 and errD(h) > ϵ?
Some bad hypothesis h fooled our training set S (i.e., had 0-empirical error)
A single bad hypothesis h can fool us with probability

PrS∼Dm [h fooled S] < (1− ϵ)m

We got fooled by some hypothesis h ∈ H:

Pr [errD > h] = Pr [some h fooled us] ≤ |H| · Pr [a specific h fooled us]

≤ |H| · (1− ϵ)m < δ,

if m ≥ 1
ϵ

(
ln |H|+ ln

(
1
δ

))

8 / 17



Generalization Guarantee PAC guarantee

ERM to PAC

What must have happended if we found h with errS(h) = 0 and errD(h) > ϵ?
Some bad hypothesis h fooled our training set S (i.e., had 0-empirical error)
A single bad hypothesis h can fool us with probability

PrS∼Dm [h fooled S] < (1− ϵ)m

We got fooled by some hypothesis h ∈ H:

Pr [errD > h] = Pr [some h fooled us] ≤ |H| · Pr [a specific h fooled us]
≤ |H| · (1− ϵ)m

< δ,

if m ≥ 1
ϵ

(
ln |H|+ ln

(
1
δ

))

8 / 17



Generalization Guarantee PAC guarantee

ERM to PAC

What must have happended if we found h with errS(h) = 0 and errD(h) > ϵ?
Some bad hypothesis h fooled our training set S (i.e., had 0-empirical error)
A single bad hypothesis h can fool us with probability

PrS∼Dm [h fooled S] < (1− ϵ)m

We got fooled by some hypothesis h ∈ H:

Pr [errD > h] = Pr [some h fooled us] ≤ |H| · Pr [a specific h fooled us]
≤ |H| · (1− ϵ)m < δ,

if m ≥ 1
ϵ

(
ln |H|+ ln

(
1
δ

))
8 / 17



Generalization Guarantee Interpreting guarantee

ERM to PAC - What just happened?!

Observation 2.1
Under the fundamental assumption of MLa, for a set H of hypotheses,

any algorithm that
finds a hypothesis h ∈ H with 0 empirical error for S with m ≥ 1

ϵ

(
ln |H|+ ln

(
1
δ

))
examples is PAC!

athat samples are drawn i.i.d. from a fixed, unknown D

- Valid for non-ERM algorithms as well
- More genrally, we can show that errD < errS + ϵ i.e errS is
a represntative of errD provided we have sufficient samples

- m depends logarithmically on the size of H

Observation 2.1

Sample Size (m)

Model Complexity (|H|)

Error (ϵ) Confidence (1− δ)
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Occam’s Razor ERM-to-PAC : Implications I

Occam’s Razor

Observation 3.1 (Simplified Sample Complexity Bound)

h ∈ H with errS(h) = 0 → errD(h) < ϵ, provided S had m ≥ ln |H|
ϵ samples.

A smaller |H| means fewer samples to get the same guarantee!
“Among competing hypotheses, the one with the fewest assumptions should be selected.”

Occam’s Razor (c. 1320)
Plurality should not be posited without necessity

- Observation 2.1 provides a formal, mathematical
justification for this ancient principle

- Simpler models (smaller |H|) are easier to work
with and they provide better generalization
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Occam’s Razor ERM-to-PAC : Implications II

ERM: A master algorithm to rule them all?

ERM: the master algorithm for ML?

Pattern is geniune and not noise →
simple hypothesis class H capturing it
Need only ≈ |H|/ϵ samples to learn H

Every “learnable” class of
hypotheses can be learnt by ERM!

ML should then be a solved problem!
Except it is not...
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Occam’s Razor Issues with ERM - I

Issues with ERM : Computational Barrier

ERM is an principle, not an algorithm.
How to actually compute argmin errS(h)?

Finding the simplest 10-line Python program that fits a dataset is computationally impossible
Finding the wieghts of a neural network to correctly classify a dataset takes exponential time

Efficiently PAC Algorithms
Just because a simple solution exists doesn’t mean we can find it efficiently
We need different algorithms like SVM, Regression, Naive Bayes,...

12 / 17



Occam’s Razor Issues with ERM - I

Issues with ERM : Computational Barrier

ERM is an principle, not an algorithm.
How to actually compute argmin errS(h)?

Finding the simplest 10-line Python program that fits a dataset is computationally impossible

Finding the wieghts of a neural network to correctly classify a dataset takes exponential time

Efficiently PAC Algorithms
Just because a simple solution exists doesn’t mean we can find it efficiently
We need different algorithms like SVM, Regression, Naive Bayes,...

12 / 17



Occam’s Razor Issues with ERM - I

Issues with ERM : Computational Barrier

ERM is an principle, not an algorithm.
How to actually compute argmin errS(h)?

Finding the simplest 10-line Python program that fits a dataset is computationally impossible
Finding the wieghts of a neural network to correctly classify a dataset takes exponential time

Efficiently PAC Algorithms
Just because a simple solution exists doesn’t mean we can find it efficiently
We need different algorithms like SVM, Regression, Naive Bayes,...

12 / 17



Occam’s Razor Issues with ERM - I

Issues with ERM : Computational Barrier

ERM is an principle, not an algorithm.
How to actually compute argmin errS(h)?

Finding the simplest 10-line Python program that fits a dataset is computationally impossible
Finding the wieghts of a neural network to correctly classify a dataset takes exponential time

Efficiently PAC Algorithms
Just because a simple solution exists doesn’t mean we can find it efficiently

We need different algorithms like SVM, Regression, Naive Bayes,...

12 / 17



Occam’s Razor Issues with ERM - I

Issues with ERM : Computational Barrier

ERM is an principle, not an algorithm.
How to actually compute argmin errS(h)?

Finding the simplest 10-line Python program that fits a dataset is computationally impossible
Finding the wieghts of a neural network to correctly classify a dataset takes exponential time

Efficiently PAC Algorithms
Just because a simple solution exists doesn’t mean we can find it efficiently
We need different algorithms like SVM, Regression, Naive Bayes,...

12 / 17



Occam’s Razor Issues with ERM - II

Issues with ERM : Statistical Barrier

What if the world isn’t simple?
Every algorithm makes a bet on the nature of the problem

A Linear Classifier bets the data is ‘mostly’ separable by a line
A Deep Neural Network bets the solution is a complex, hierarchical function
Current LLMs bet context is everything and true understanding emerges from
mastering statistical patterns

No Free Lunch Theorem (Informal)
For any learning algorithm A, there exists a distribution D on which it performs poorly.
Averaged over all D, the performance of any two algorithms is exactly the same.
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No Free Lunch

The Data-Bias Spectrum

Complete Inductive Bias
(Hardcoded System)

Zero Inductive Bias
(Generic Learner)

Expert Systems No Free Lunch

<— More Assumptions More Data Required —>

Linear Models,
Simple Trees

Kernel Methods,
Random Forests Neural Networks

Noam Chomsky: The ability
to learn grammars is
hard-wired into the brain. It is
not possible to “learn”
linguistic ability — rather, we
are born with it.

Geoff Hinton: There exists
some “universal” learning
algorithm that can learn
anything: language, vision,
speech, etc. The brain is based
on it, and we’re working on
uncovering it.
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Takeaways Recap

The Takeaway

Theory of Learning

Formalized learning in the context of PAC (Porbably Approximately Correct) Model
Minimizing trainig error → Minimized test error, but with sufficient trainig data
Computational Barrier: How to efficiently minimize training error?
Occam’s Razor: Higher confidence in the generalization of “simpler models”
No Free Lunch: Learning impossible without assumptions on reality

For Practitioners of Learning
No point in finding a “master algorithm”
Understand the problem well enough to choose an algorithm whose inductive bias
matches the underlying structure of the data.
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Takeaways Questions?

Questions?

The Linear Models, born of light,
The branching Trees of wood and might,
The Neural Networks, deep as night,
Each claims its rule, and thinks it right.

But no single Algo to rule them all,
Where one triumphs, one must fall.
No master key for every door,
No champion on every shore.
Quest is not to find the One,
Hone your bias, 'til the work is done.
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